You get circular motion, where the acceleration is pointing towards the center of the circle, as long as they are constant, and not fluctuating.
Answer:
1.a) 1 kJ
1.b) 4 kJ
ratio 1:4
1.c) 4 times as before
2.a) 3.33 m/s2
Explanation:
1.a) bicycle's velocity =Displacement/time
=100/20 m/s
=5 m/s
bicycler's KE =1/2 *mass*(velocity)^2
=1/2*80*5^2
=1000 J = 1 kJ
1.b) bicycle's new velocity =200/20 m/s
=10 m/s
bicycler's new KE =1/2*80*10^2
=4000 J = 4 kJ
Ratio= KE 1 :KE new
= 1 :4
1.c) when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it
ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times
2.a) car acceleration = (20-0)/6 m/s2
= 3.33 m/s2
Ω₀ = the initial angular velocity (from rest)
t = 0.9 s, time for a revolution
θ = 2π rad, the angular distance traveled
Let
α = the angular acceleration
ω = the final angular velocity
The angular rotation obeys the equation
(1/2)*(α rad/s²)*(0.9 s)² = (2π rad)
α = 15.514 rad/s²
The final angular velocity is
ω = (15.514 rad/s²)*(0.9 s) = 13.963 rad/s
If the thrower's arm is r meters long, the tangential velocity of release will be
v = 13.963r m/s
Answer: 13.963 rad/s
Answer:
Explanation:
Given that,
Initial angular velocity is 0
ωo=0rad/s
It has angular velocity of 11rev/sec
ωi=11rev/sec
1rev=2πrad
Then, wi=11rev/sec ×2πrad
wi=22πrad/sec
And after 30 revolution
θ=30revolution
θ=30×2πrad
θ=60πrad
Final angular velocity is
ωf=18rev/sec
ωf=18×2πrad/sec
ωf=36πrad/sec
a. Angular acceleration(α)
Then, angular acceleration is given as
wf²=wi²+2αθ
(36π)²=(22π)²+2α×60π
(36π)²-(22π)²=120πα
Then, 120πα = 8014.119
α=8014.119/120π
α=21.26 rad/s²
Let. convert to revolution /sec²
α=21.26/2π
α=3.38rev/sec
b. Time Taken to complete 30revolution
θ=60πrad
∆θ= ½(wf+wi)•t
60π=½(36π+22π)t
60π×2=58πt
Then, t=120π/58π
t=2.07seconds
c. Time to reach 11rev/sec
wf=wo+αt
22π=0+21.26t
22π=21.26t
Then, t=22π/21.26
t=3.251seconds
d. Number of revolution to get to 11rev/s
∆θ= ½(wf+wo)•t
∆θ= ½(0+11)•3.251
∆θ= ½(11)•3.251
∆θ= 17.88rev.
Answer:
47 m
Explanation:
Data obtained from the question include the following:
Length of dry leg 1 (L1) = 40 m
Length of dry leg 2 (L2) = 25 m
Length of swimming course (L) =..?
The length of the swimming course can be obtained by using pythagoras theory as shown below:
L² = L1² + L2²
L² = 40² + 25²
L² = 1600 + 625
L² = 2225
Take the square root of both side.
L = √2225
L = 47.1 ≈ 47 m
Therefore, the length of the swimming course is approximately 47 m.