The first thing you should do for this case is to find the horizontal and vertical components of the forces acting on the body.
We have then:
Horizontal = 9-9.2cos (58) = 4.124742769 N.
Vertical = 9.2sin (58) = 7.802042485 N
Then, the resulting net force is:
F = √ ((4.124742769) ^ 2 + (7.802042485) ^ 2) = 8.825268826 N
Then by definition:
F = m * a
Clearing the acceleration:
a = F / m
a = (8.825268826) / (3.0) = 2.941756275 m / s ^ 2
answer:
The magnitude of the body's acceleration is
2.941756275 m / s ^ 2
A meter is 100 meters. So a hundredth of a meter stick is a centimeter.<span />
Answer:
C. All waves have the same speed.
Explanation:
Wave equation is given as;
V = fλ
where;
V is the speed of the wave
f is the frequency of the wave
λ is the wavelength
The speed of the wave depends on both wavelength and frequency
The speed of the electromagnetic waves in a vacuum is 3 x 10⁸ m/s, this also the speed of light which is constant for all electromagnetic waves.
Therefore, the correct option is "C"
C. All waves have the same speed.
1. Take a breaker
2. Put a sieve on it
3. Pour the mixture and shake the sieve gently
4. Wait for the flour to fall. After the flour falls pour the rice from the sieve into other beaker then do experiment again for fair testing(optional)
To solve the problem we will first start considering the Pressure given the hydrostatic definition of the product between the density, the gravity and the depth. We will define the area where the liquid acts and later we will use the definition of the force as a product between the pressure and the area to calculate the force given in the two depths. The gauge pressure at the depth x will be

This pressure acts on the strip of area

The force acting on that strip is given by,



To evaluate the force, we will then consider the integral of the pressure as a function of the Area, or the integral of the previously found terms.


Evaluating at the initial depth of 1.8m and the final depth of 4.4 we have then that,


Therefore the Net force will be


