Answer: B
Explanation:
According to Ohm's Law, the answer is B.
Ohm's Law states that power is equal to volume x current.
If volume x current equals power, that means they are both 50% of power.
Ohm's Law:
power = voltage x current
current = voltage x power
voltage = power x current
I hope this answer helped.
C) volume
.........
The volume of gas depends on e.g. temperature and pressure.
Answer:
0.161moles
Explanation:
Given parameters:
Mass of Fe = 18g
Oxygen gas is in excess
Unknown:
Number of moles of Fe₂O₃ produced = ?
Solution:
To start with, let us write a chemically balanced equation before proceeding to understand the nuances of this problem.
4Fe + 3O₂ → 2Fe₂O₃
In the equation above above, 4 mole of iron combined with 3 moles of oxygen gas to 2 moles of Fe₂O₃.
In solving this problem, we can identify that Fe is the limiting reactant since we have been told oxygen gas is in excess. The suggests that the extent to which the product is formed and the reaction proceeds hinges on the amount of Fe we have.
It is best to work from the given, or known reactant to the unknown
The known in this scenario is the mass of Fe. Let us find the number of moles of this specie;
Number of moles of Fe = 
Molar mass of Fe = 56g/mol
Number of moles =
= 0.32mol
Using this known number of moles of Fe, we can relate it to that of the unknown amount of the product and obtain the number of moles.
4 moles of Fe produced 2 moles of Fe₂O₃
0.32 moles of Fe will produce
= 0.161moles
Answer:
A balanced equation is an equation for a chemical reaction in which the number of atoms for each element in the reaction and the total charge is the same for both the reactants and the products.
Explanation:
Answer:
d making models.
Explanation:
When scientists create a representation of a complex process, they are inferring that they are making models.
A model is an abstraction of the real world or a complex process. Models are very useful in developing solutions to processes that are not easily simplified.
- The models allow a part of a body to be simply studied.
- Through this simple abstraction, extrapolations to other parts of the system can be deduced.
- This can give very useful insights into the other parts of the system.
- The heterogeneity of complex processes is a huge limitation to understanding them.
- A homogenous part can be modelled and used to understand the system.