The volume of the balloon is 500 cubic inches after 20 seconds
<h3>How to determine the volume?</h3>
From the given graph, we have:
- Time on the x-axis
- Volume on the y-axis
Also from the graph, we have:
V(20) = 500
This means that:
The volume of the balloon is 500 cubic inches after 20 seconds
Read more about graphs at:
brainly.com/question/4025726
#SPJ1
Answer:
christopher columbus
Step-by-step explanation:
Answer:
Step-by-step explanation:
this is a question people will most likely not answer since we dont know how much they deduce of taxes.
Answer:
$61.69 You take the 15.5 and take off the .5 to begin with so you start with 15 multiply it by 3.98 to get 59.7 then you take 3.98 divide it by 2 because the .5 is the same thing as 1/2 then you get 1.99 then you add it to your 59.7 to get 61.69 and thats your answer. Hope this helps :)
Answer:
![\sqrt[3]{x^{10} }[\tex]Step-by-step explanation:Exponential Rules:[tex]x^{a} + x^{b} = x^{a + b}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EStep-by-step%20explanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExponential%20Rules%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Dx%5E%7Ba%7D%20%2B%20x%5E%7Bb%7D%20%3D%20x%5E%7Ba%20%2B%20b%7D)
![\sqrt[b]{x^{a} } =x^{\frac{a}{b} } Original Equation:[tex]\sqrt[3]{x^{10} } = x^{\frac{10}{3} } Answer:[tex]\sqrt[3]{x^{10} }[\tex]Convert the cubed root to a power. Cubed root = [tex]\frac{1}{3}](https://tex.z-dn.net/?f=%5Csqrt%5Bb%5D%7Bx%5E%7Ba%7D%20%7D%20%3Dx%5E%7B%5Cfrac%7Ba%7D%7Bb%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EOriginal%20Equation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%20%20%3D%20x%5E%7B%5Cfrac%7B10%7D%7B3%7D%20%7D%20%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Csqrt%5B3%5D%7Bx%5E%7B10%7D%20%7D%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3EConvert%20the%20cubed%20root%20to%20a%20power.%20Cubed%20root%20%3D%20%5Btex%5D%5Cfrac%7B1%7D%7B3%7D)

Convert them, so they have a common denominator - 


[tex]\sqrt[3]{x^{10} }[\tex] = [tex]x^{\frac{10}{3} } [\tex]