What do we know about those two lines?
They are perpendicular, meaning they have the same slope.
We know the slope of both is not zero (neither is vertical).
Therefore either
1) Both slopes are positive and therefore the product is positive
2) Both slopes are negative and therefore the product is positive (minus by a minus is a plus)
For the y intercepts, we know that the line P passes through the origin.
Therefore its Y intercept is zero.
[draw it if this is not obvious and ask where does it cross the y axis]
Therefore the Y intercept of line K and line P is zero.
[anything multiplied by a zero is a zero]
So we know that the product of slopes is positive, and we know that the product of Y intercepts is zero.
So the product of slopes must be greater.
Answer A
Answer:
y = 
Step-by-step explanation:
y = log 5 2x
inverse ------> y=x
x = log 5 2y

y = 
Answer:
c) 5.39
Step-by-step explanation:
The digit that is in the hundredths place is the 8. (The hundredths are two digits to the right of the point).
The thousandths in this case would be the 9, since the 9 is close to the next hundredth, the nearest hundredth would be 9 (adding 1 to the 8), therefore the number would be 5.39
I believe it is.... (2,2)or(4,4)
9514 1404 393
Answer:
Step-by-step explanation:
A graphing calculator answers these questions easily.
The ball achieves a maximum height of 40 ft, 1 second after it is thrown.
__
The equation is usefully put into vertex form, as the vertex is the answer to the questions asked.
h(t) = -16(t^2 -2t) +24
h(t) = -16(t^2 -2t +1) +24 +16 . . . . . . complete the square
h(t) = -16(t -1)^2 +40 . . . . . . . . . vertex form
Compare this to the vertex form:
f(x) = a(x -h)^2 +k . . . . . . vertex (h, k); vertical stretch factor 'a'
We see the vertex of our height equation is ...
(h, k) = (1, 40)
The ball reaches a maximum height of 40 feet at t = 1 second after it is thrown.