Answer:
x = 14
Step-by-step explanation:
As we can see that the bottom side is equivalent to 3 of the smallest triangle and the side of the larger triangle is equivalent to the 9
This represents that it is dilated by 3 factor
So
= 3 × 3
= 9
Now the other side i.e. 5 of the smallest triangle also need to be dilated by a 3 factor
So the new side is 15
Also the largest triangle is x + 1
So,
15 = x + 1
x = 14
The first, second one because they synchronization are proved to equally cause them to be similar
The answer is b, hope I helped (:
The two equations represent the proportional relationship.
y=3x and y=12x are proportional relation ship equations
proportion equations can be defined as
If we change x the y will change in the same proportion.
<h3>What is the proportional relationship?</h3>
Proportional relationships are relationships between two variables where their ratios are equivalent.
Another way to think about them is that, in a proportional relationship, one variable is always a constant value time the other.
That constant is known as the constant of proportionality.
proportional relationship equation contain (0,0) points
If we put x=0
This will give us,y=0
If we put x=0, in y=12x
It will give y=0
put if we put x=0 in
y=3x it will give us y=0
hence these two equations represent the proportional relationship.
To learn more about the equation visit:
brainly.com/question/2972832
#SPJ1
Answer:
The function has a negative leading coefficient and a maximum vertex point
Explanation:
This function's leading coefficient is determined by whether it is concave up or concave down, meaning it has an Up and Up end behavior for a positive leading coefficient and a Down and Down end behavior for a negative coefficient.
This function's end behavior is Down and Down, so it must have a negative leading coefficient.
The function has a minimum vertex when the function has a positive leading coefficient and a maximum vertex point when the function has a negative leading coefficient.
This means that the functions vertex is the highest or lowest possible value of the function (the rest of the function continues forever in whichever direction.
This particular function has a maximum vertex as there is no point above the vertex here and the function has a negative leading coefficient.