First, some housekeeping:
cos = 12/13 is incomplete; "cos" must have an argument (input).
cos x = 12/13 is fine; here "cos" has the argument (input) x.
Given that cos x = 12/13, find sin x. To do this, we'll need to find the length of the opposite side, given that the hypo length is 13 and the adj. side length is 12.
12^2 + opp^2 = 13^2, or opp^2 = 169-144 = 25.
Then the opp side could be either 5 or -5. Let's assume that it's +5, and that angle x is in the first quadrant.
Then sin x = opp / hyp = 5/13 (answer)
cos 2 is an entirely different kind of problem. Here you are told what the argument (input) to the cosine function is (it is 2, which here means 2 radians).
Using a calculator: cos 2 = -0.416. Note that the angle 2 rad is in QII, which is why the "adjacent side" is negative and also why the cos of 2 is negative.
The answer would be 24pi inches.
You can find this by using the formula for a circumference and plugging in the value of the radius.
C = 2pi*r
C = 2pi * 12
C = 24pi
35,37,39
111 divided by 3 is 37...so that is the middle number. Two below it is 35 and 2 above it is 39 and all three would add up to 111. So 35 is the lowest.
Step-by-step explanation:
Hey there!
While factorising you remember to make it take common in most of the expression.
Here;
=mx+cx+my+cy
Take common 'x' in "mx+cx" and 'y' in my + cy.
= x(m+c) + y(m+c)
Now, "(m+c)" common again.
= (m+c) (x+y)
Therefore the factorized form of the expression in (m+c)(x+y).
<u>Hope it helps</u><u>.</u><u>.</u><u>.</u>
Answer:
-13
Step-by-step explanation:
(-1/3)*6 = -2
f(-1/3) = -2 -11
f(-1/3) = -13