Answer:
Explanation:
Amount of heat required can be found from the following relation
Q = mcΔT
m is mass of the body , c is specific heat and ΔTis rise in temperature .
Here m = 300 kg
c = 3350 J /kg k
ΔT = 30 - 25
= 5 °C
Putting the values in the expression above
Q = 300 x 3350 x 5
= 5025000 J
Rate at which energy is absorbed = 1200 J /s
Time required
= 5025000 / 1200
= 4187.5 S
= 69.8 minute
= 1 hour 9.8 mimutes.
Answer:
2805 °C
Explanation:
If the gas in the tank behaves as ideal gas at the start and end of the process. We can use the following equation:
The key issue is identify the quantities (P,T, V, n) in the initial and final state, particularly the quantities that change.
In the initial situation the gas have an initial volume
, temperature
, and pressure
,.
And in the final situation the gas have different volume
and temeperature
, the same pressure
,, and the same number of moles
,.
We can write the gas ideal equation for each state:
and
, as the pressure are equals in both states we can write
solving for
(*)
We know
= 935 °C, and that the
(the complete volume of the tank) is the initial volume
plus the part initially without gas which has a volume twice the size of the initial volume (read in the statement: the other side has a volume twice the size of the part containing the gas). So the final volume 
Replacing in (*)
Answer:
1.7 m/s
Explanation:
Relevant Data provided as per the question below:-
Radius = 15.0 cm
Time = 0.56 s.
Based on the above information
The computation of the speed of the object is shown below:-



= 1.683 m/s
or
= 1.7 m/s
Therefore for computing the speed of the object or velocity we simply applied the above formula by considering the pi and all other given data
3.4 miles/hour = 1519.936 mm/s
You should check out this website:
https://www.hunker.com/12003706/the-four-and-more-basic-parts-of-an-electrical-circuit