1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
14

Which of the following best describes the use of a renewable resource? (2 points) Most power plants burn fossil fuels to generat

e electricity for use in homes, offices, and other buildings. There are areas in California that use the heat from deep in the Earth to generate electricity. Propane is a product you might use to barbeque; it comes from natural gas and processing oil. We use gasoline to power our cars to get to work and school each day.
Physics
1 answer:
kolbaska11 [484]3 years ago
5 0

Which of the following best describes the use of a renewable resource?

Answer:

There are areas in California that use the heat from deep in the Earth to generate electricity.

Explanation:

It comes from the earth itself and we use a lot of things that comes from the earth and deep within it.

You might be interested in
How many valence electrons are in an atom of fluorine
Korolek [52]

Since Fluorine has 2 electrons in the s orbitals and 5 in the p orbitals of shell number 2, there is a total of 7 valence electrons.

3 0
3 years ago
A student places a block on a table and hangs one mass from the block. The student lets the block go and observes the block move
NeTakaya

Magnitude of acceleration

Explanation:

We know that acceleration can increase depending in the force applied on an object, any object with a greater mass will apply a greater force. F = M(a).

7 0
2 years ago
Does the under water pressure depend on the molecules of the air or what does it depend on
miskamm [114]

Answer:the pressure depends on gas and it will be half as much underwater

Explanation:

Water pressure increases with the depth of the water. This is because the weight of the column of water above the object increases. But a large, shallow pond may have more water in it than a small, deep pond.

This is due to an increase in hydrostatic pressure, the force per unit area exerted by a liquid on an object. The deeper you go under the sea, the greater the pressure of the water pushing down on you. For every 33 feet (10.06 meters) you go down, the pressure increases by one atmosphere .

4 0
3 years ago
Sphere A of mass 0.600 kg is initially moving to the right at 4.00 m/s. sphere B, of mass 1.80 kg is initially to the right of s
anzhelika [568]

A) The velocity of sphere A after the collision is 1.00 m/s to the right

B) The collision is elastic

C) The velocity of sphere C is 2.68 m/s at a direction of -5.2^{\circ}

D) The impulse exerted on C is 4.29 kg m/s at a direction of -5.2^{\circ}

E) The collision is inelastic

F) The velocity of the center of mass of the system is 4.00 m/s to the right

Explanation:

A)

We can solve this part by using the principle of conservation of momentum. The total momentum of the system must be conserved before and after the collision:

p_i = p_f\\m_A u_A + m_B u_B = m_A v_A + m_B v_B

m_A = 0.600 kg is the mass of sphere A

u_A = 4.00 m/s is the initial velocity of the sphere A (taking the right as positive direction)

v_A is the final velocity of sphere A

m_B = 1.80 kg is the mass of sphere B

u_B = 2.00 m/s is the initial velocity of the sphere B

v_B = 3.00 m/s is the final velocity of the sphere B

Solving for vA:

v_A = \frac{m_A u_A + m_B u_B - m_B v_B}{m_A}=\frac{(0.600)(4.00)+(1.80)(2.00)-(1.80)(3.00)}{0.600}=1.00 m/s

The sign is positive, so the direction is to the right.

B)

To verify if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

Before the collision:

K_i = \frac{1}{2}m_A u_A^2 + \frac{1}{2}m_B u_B^2 =\frac{1}{2}(0.600)(4.00)^2 + \frac{1}{2}(1.80)(2.00)^2=8.4 J

After the collision:

K_f = \frac{1}{2}m_A v_A^2 + \frac{1}{2}m_B v_B^2 = \frac{1}{2}(0.600)(1.00)^2 + \frac{1}{2}(1.80)(3.00)^2=8.4 J

The total kinetic energy is conserved: therefore, the collision is elastic.

C)

Now we analyze the collision between sphere B and C. Again, we apply the law of conservation of momentum, but in two dimensions: so, the total momentum must be conserved both on the x- and on the y- direction.

Taking the initial direction of sphere B as positive x-direction, the total momentum before the collision along the x-axis is:

p_x = m_B v_B = (1.80)(3.00)=5.40 kg m/s

While the total momentum along the y-axis is zero:

p_y = 0

We can now write the equations of conservation of momentum along the two directions as follows:

p_x = p'_{Bx} + p'_{Cx}\\0 = p'_{By} + p'_{Cy} (1)

We also know the components of the momentum of B after the collision:

p'_{Bx}=(1.20)(cos 19)=1.13 kg m/s\\p'_{By}=(1.20)(sin 19)=0.39 kg m/s

So substituting into (1), we find the components of the momentum of C after the collision:

p'_{Cx}=p_B - p'_{Bx}=5.40 - 1.13=4.27 kg m/s\\p'_{Cy}=p_C - p'_{Cy}=0-0.39 = -0.39 kg m/s

So the magnitude of the momentum of C is

p'_C = \sqrt{p_{Cx}^2+p_{Cy}^2}=\sqrt{4.27^2+(-0.39)^2}=4.29 kg m/s

Dividing by the mass of C (1.60 kg), we find the magnitude of the velocity:

v_c = \frac{p_C}{m_C}=\frac{4.29}{1.60}=2.68 m/s

And the direction is

\theta=tan^{-1}(\frac{p_y}{p_x})=tan^{-1}(\frac{-0.39}{4.27})=-5.2^{\circ}

D)

The impulse imparted by B to C is equal to the change in momentum of C.

The initial momentum of C is zero, since it was at rest:

p_C = 0

While the final momentum is:

p'_C = 4.29 kg m/s

So the magnitude of the impulse exerted on C is

I=p'_C - p_C = 4.29 - 0 = 4.29 kg m/s

And the direction is the angle between the direction of the final momentum and the direction of the initial momentum: since the initial momentum is zero, the angle is simply equal to the angle of the final momentum, therefore -5.2^{\circ}.

E)

To check if the collision is elastic, we have to check if the total kinetic energy is conserved or not.

The total kinetic energy before the collision is just the kinetic energy of B, since C was at rest:

K_i = \frac{1}{2}m_B u_B^2 = \frac{1}{2}(1.80)(3.00)^2=8.1 J

The total kinetic energy after the collision is the sum of the kinetic energies of B and C:

K_f = \frac{1}{2}m_B v_B^2 + \frac{1}{2}m_C v_C^2 = \frac{1}{2}(1.80)(1.20)^2 + \frac{1}{2}(1.60)(2.68)^2=7.0 J

Since the total kinetic energy is not conserved, the collision is inelastic.

F)

Here we notice that the system is isolated: so there are no external forces acting on the system, and this means the system has no acceleration, according to Newton's second law:

F=Ma

Since F = 0, then a = 0, and so the center of mass of the system moves at constant velocity.

Therefore, the centre of mass after the 2nd collision must be equal to the velocity of the centre of mass before the 1st collision: which is the velocity of the sphere A before the 1st collision (because the other 2 spheres were at rest), so it is simply 4.00 m/s to the right.

Learn more about momentum and collisions:

brainly.com/question/6439920

brainly.com/question/2990238

brainly.com/question/7973509

brainly.com/question/6573742

#LearnwithBrainly

8 0
3 years ago
Who was albert einstien describe his contributions???
Nimfa-mama [501]

Answer:

Albert Einstein was from Germany he was born theoritical physicist, from childhood only he loved mechanical toys, he was highly gifted in Mathematics, He was a world citizen and a scientific genius too. His contribution were:

1) he developed the theory of relativity

2) he also discovered the process of nuclear fission

3)he developed the quantum theory of specific heat

4)theory of stimulated emission, on which laser device technology is based

5) law of photoelectric effect

hope it helped you :)

8 0
2 years ago
Other questions:
  • Is it possible for an object moving with a constant speed to accelerate? explain?
    11·1 answer
  • Particle A and particle B are held together with a compressed spring between them. When they are released, the spring pushes the
    14·1 answer
  • Which letters in the image represent the heart's ventricles?
    14·2 answers
  • Five multiple choice science questions.
    12·1 answer
  • Where do earthquakes come from?
    6·2 answers
  • Why don’t we feel the gravitational force of a large object such as a skyscraper semi-truck?
    15·1 answer
  • A 14gram ovarian tumor is treated using a sodium phosphate in which the phosphorus atoms are the radioactive phosphorus 32 isoto
    11·1 answer
  • The law of conservation of mass states that mass can never be created or destroyed, only changed. true or faulse
    9·1 answer
  • A motorist, traveling east on an open highway, sets his cruise control at 90.0 km/h. How far will he travel in 0.75 hours?
    10·2 answers
  • A 5.2 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m-long seesaw. How far to the left of the pivot must
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!