The correct answer is C.
On the left:
2 carbon+ 2 oxygen+ 2 oxygen
On the right:
2 carbon+ 4 oxygen (remember to multiply the subscript by the coefficient)
Answer:5
Explanation:(H3) is 3 (H3)2 is 5
Answer:

Explanation:
Hello,
In this case, by knowing the given reference reactions, one could rearrange them as follows:


Subsequently, to obtain the main reaction, we add the aforementioned reference rearranged reactions as shown below (just as reference):

Consequently, the equilibrium constant is computed as:
![Kp=\frac{[N_2][O_2]}{[NO]^2} * \frac{[NO_2]^2}{[N_2][O_2]^2} =Kp_2*Kp_3=4.35x10^{18}*7.056x10^{-13}=3.07x10^6](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%20%2A%20%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%5E2%7D%20%3DKp_2%2AKp_3%3D4.35x10%5E%7B18%7D%2A7.056x10%5E%7B-13%7D%3D3.07x10%5E6)
Best regards.
The volume of the gas that occupy at STP is 165. 28 cm^3
calculation
by use of combined gas law that is P1V1/T1=P2V2/T2, where
P1=84.6 kpa
T1=23.5 +273=296.5 K
V1=215 cm^3
At STP T= 273 K and P= 101.325 Kpa
therefore p2 = 101.325 Kpa and T2 = 272 K V2=?
by making V2 the subject of the formula V2 =T2P1V1/P2T1
V2 = 273 K x 84.6 Kpa x 215 cm^3/ 101,.325 Kpa x296.5 K =165.28 cm^3