I believe distillation is used to separate solvents of different kind as long as it is heated to its boiling temp
Clutch Prep
Ch.2 - Atoms & ElementsSee all chapters
Atomic Theory
See all sections
LearnAdditional Practice
Solution: Which of the following chemical reactions is/are NOT possible according to Dalton's atomic theory?a. reaction 1: CCl4 → CH4b. reaction 2: N2 + 3H2 → 2NH3c. reaction 3: 2H2 + O2 → 2H2O + Au
Problem
Which of the following chemical reactions is/are NOT possible according to Dalton's atomic theory?
a. reaction 1: CCl4 → CH4
b. reaction 2: N2 + 3H2 → 2NH3
c. reaction 3: 2H2 + O2 → 2H2O + Au
If the glasses and glove were wrong then I would chose the fire extinguisher and the power source should be the correct answer.
That's just what I would do though.
4Al(s) + 3O2(g) --> 2Al2O3(s) This is the balanced.
From the equation:
4 moles of Al required 3 moles of O2 to produce 2 moles of Al2O3
3 moles of O2 reacted with 4 moles of Al to produce 2 moles of Al2O3
1 mole of O2 reacted with 4/3 moles of Al to produce 2/3 moles of Al2O3 (Divide by 3)
4.5 moles of O2 reacted with (4/3 *4.5) moles of Al to produce (2/3*4.5) moles of Al2O3
4.5 moles of O2 reacted with 6moles of Al to produce 3moles of Al2O3
(3) is the answer. 6 mol of Al.
Answer:
Lowering the temperature typically reduces the significance of the decrease in entropy. That makes the Gibbs Free energy of the reaction more negative. As a result, the reaction becomes more favorable overall.
Explanation:
In an addition reaction there's a decrease in the number of particles. Consider the hydrogenation of ethene as an example.
.
When is added to (ethene) under heat and with the presence of a catalyst, (ethane) would be produced.
Note that on the left-hand side of the equation, there are two gaseous molecules. However, on the right-hand side there's only one gaseous molecule. That's a significant decrease in entropy. In other words, .
The equation for the change in Gibbs Free Energy for a particular reaction is:
.
For a particular reaction, the more negative is, the more spontaneous ("favorable") the reaction would be.
Since typically for addition reactions, the "entropy term" of it would be positive. That's not very helpful if the reaction needs to be favorable.
(absolute temperature) is always nonnegative. However, lowering the temperature could help bring the value of