Answer:
1 mole of Al2O3 = 102 grams
1 mole of Al2 = 54 grams
102 grams of Al2O3 contains = 54 gram of Al2
10kg of Al2O3 contains = (54/102)*10000g Al2
= 5294.11 g Al2 or 5.29411 kg
Answer:
Chemical reaction involves the breaking of bonds in the reactants and formation of bonds in the products. ... If a reaction is exothermic, more energy is released when the bonds of the products are formed than it takes to break the bonds of the reactants. This is the reason for temperature change during a reaction.
Explanation:
Here are just a few everyday demonstrations that temperature changes the rate of chemical reaction: Cookies bake faster at higher temperatures. Bread dough rises more quickly in a warm place than in a cool one.
I believe the answer is concentration
Sorry if I’m wrong hope this helps
Answer:
4) Each cytochrome has an iron‑containing heme group that accepts electrons and then donates the electrons to a more electronegative substance.
Explanation:
The cytochromes are <u>proteins that contain heme prosthetic groups</u>. Cytochromes <u>undergo oxidation and reduction through loss or gain of a single electron by the iron atom in the heme of the cytochrome</u>:

The reduced form of ubiquinone (QH₂), an extraordinarily mobile transporter, transfers electrons to cytochrome reductase, a complex that contains cytochromes <em>b</em> and <em>c₁</em>, and a Fe-S center. This second complex reduces cytochrome <em>c</em>, a water-soluble membrane peripheral protein. Cytochrome <em>c</em>, like ubiquinone (Q), is a mobile electron transporter, which is transferred to cytochrome oxidase. This third complex contains the cytochromes <em>a</em>, <em>a₃</em> and two copper ions. Heme iron and a copper ion of this oxidase transfer electrons to O₂, as the last acceptor, to form water.
Each transporter "downstream" is <u>more electronegative</u><u> than its neighbor </u>"upstream"; oxygen is located in the inferior part of the chain. Thus, the <u>electrons fall in an energetic gradient</u> in the electron chain transport to a more stable localization in the <u>electronegative oxygen atom</u>.
A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.