Answer:
2-Methylpentane is a branched-chain alkane with the molecular formula C6H14. It is a structural isomer of hexane composed of a methyl group bonded to the second carbon atom in a pentane chain.
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
Answer: The reaction is exothermic reaction as the energy of products is less than the energy of reactants.
Explanation: Exothermic reactions are defined as the reactions in which energy of the product is less than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Labeling of the parts in the diagram:
A represents the activation energy which is the energy required by reactants to cross the energy barrier to get converted to products.
E represents the potential energy of the reactants.
B represents the activated complex.
D represents the potential energy of the products.
C represents the total enthalpy change of the reaction, which comes out to be negative for exothermic reactions.

Answer:
C₁₆H₃₂O₂ (s) + 22O₂(g) → 16CO₂(g) + 16H₂O(g)
Explanation:
In order to determine a combustion reaction we should know that:
Reactants are: X compound and O₂
Products are: CO₂ and H₂O
In this case, the X compound is the solid palmitic acid: C₁₆H₃₂O₂
The balanced equation will be:
C₁₆H₃₂O₂ (s) + 22O₂(g) → 16CO₂(g) + 16H₂O(g)