Answer:
θ = π + periods of 2π
Sin (π + 2π) = 0
Cos (π + 2π) = -1
Tan (π + 2π) = 0
Step-by-step explanation:
Sin (θ)=0 implies that θ only can be 0 or π plus periods of 2π:
θ = 0+2π
θ = π+2π
For Cos(θ) the values only can be:
Cos (0+2π) = 1 and
Cos (π+2π) = -1
from this, only Cos (π+2π) < 0
So θ only can be θ=π+2π
The first thing we are going to do is rewrite the expression correctly.
We have:
root (27x ^ 12 / 300x ^ 8)
Rewriting:
root ((27/300) * (x ^ 12 / x ^ 8))
root ((9/100) * (x ^ (12-8)))
root ((9/100) * (x ^ (4)))
root ((9/100) * (x ^ (4)))
3 * x ^ 2 * root ((1/100)
(3 * x ^ 2) / 10
(3/10) * (x ^ 2)
Answer:
(3/10) * (x ^ 2)
1) 3+17= 20
2) 40-15= 25
3) 3 x 20= 60
4) 35/5= 7
5) 2 x 6= 1
12= 1
1/12.
<span> C. -8 or 8
</span>
4 |-8| = 4*8 = 32
4 |<span>8</span>| = 4*8 = 32