The solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
<em><u>Solution:</u></em>
Given that,

<em><u>We have to substitute eqn 1 in eqn 2</u></em>






Substitute x = 2.1925 in eqn 1
y = 2.1925 + 3
y = 5.1925
Substitute x = -3.1925 in eqn 1
y = -3.1925 + 3
y = -0.1925
Thus the solutions are (2.1925, 5.1925) and (-3.1925, -0.1925)
Answer:
I NEEEEEEEED TO SEEEE GRAPHHHHHHHHHHHH
Step-by-step explanation:
An acute angle has a smaller measure than an obtuse angle
<em>Answer: h = 120 ft; w = 80 ft </em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
<em>Step-by-step explanation: Let h and w be the dimensions of the playground. The area is given by:</em>
<em></em>
<em>A = h*w (eq1)</em>
<em></em>
<em>The total amount of fence used is:</em>
<em></em>
<em>L = 2*h + 2*w + w (eq2) (an extra distance w beacuse of the division)</em>
<em></em>
<em>Solving for w:</em>
<em></em>
<em>w = L - 2/3*h = 480 - 2/3*h (eq3) Replacing this into the area eq:</em>
<em></em>
<em></em>
<em></em>
<em>We derive this and equal zero to find its maximum:</em>
<em></em>
<em> Solving for h:</em>
<em></em>
<em>h = 120 ft. Replacing this into eq3:</em>
<em></em>
<em>w = 80ft</em>
<em></em>
<em>Therefore the maximum area is:</em>
<em></em>
<em>A = 9600 ft^2</em>
<em />
25/100=30/x x=120 (30+70y)/(120+100y)=50/100 100y=?