Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.
Answer:
w > -14
Step-by-step explanation:
Divide both sides by -6.
-6w/-6 = w
84/-6 = 14
Since it's an equality, if the coefficient of the variable is negative, when you divide the sign flips to the opposite.
Answer:
Step-by-step explanation:
Each successive year, he
earned a 5% raise. It means that the salary is increasing in geometric progression. The formula for determining the nth term of a geometric progression is expressed as
Tn = ar^(n - 1)
Where
a represents the first term of the sequence(amount earned in the first year).
r represents the common ratio.
n represents the number of terms(years).
From the information given,
a = $32,000
r = 1 + 5/100 = 1.05
n = 20 years
The amount earned in his 20th year, T20 is
T20 = 32000 × 1.05^(20 - 1)
T20 = 32000 × 1.05^(19)
T20 = $80862.4
To determine the his total
earnings over the 20-year period, we would apply the formula for determining the sum of n terms, Sn of a geometric sequence which is expressed as
Sn = (ar^n - 1)/(r - 1)
Therefore, the sum of the first 20 terms, S20 is
S20 = (32000 × 1.05^(20) - 1)/1.05 - 1
S20 = (32000 × 1.653)/0.05
S20 = $1057920
Answer:
B. 1/6
Step-by-step explanation:
9/11 is equal to 18/22, so then D.