To solve this problem, we make use of the z statistic. The formula for the z score is:z score = (x – u) / swhere x is the sample value = 0.90, u is the sample mean = 0.917, and s is the standard deviation = 0.005
Therefore:z score = (0.90 – 0.917) / 0.005z score = -3.4
From the standard probability tables, the p-value for a right tailed test of z = -3.4 is:P = 0.9997
Therefore there is a 99.97% chance that it will be above 0.90 mm
Answer:
Yes, only one range value exists for each domain value.
Answer:
1 <u> 5 </u> <u>10 </u> <u>10</u> <u>5</u> 1 Row 5
1 <u>6</u> <u>15</u> <u>20</u> <u>15</u> <u>6</u> 1 Row 6
Recursive relationship:
Each row has number of positions = row number + 1. The Row 0 is always 1.
The first and last number in each row is 1, the number in the second position and the penultimate corresponds to the number of the row. The middle numbers correspond to the sum of the two numbers in the top row. The resulting number from the addition is located in the middle of the numbers added in the next row.
Step-by-step explanation:
The pascal's triangle
* Row 0 = 1
* Row 1 = 1 1
1 Row 0
1 1 Row 1
Since there are only two positions, the first and last are 1.
*Row 2 = 1 _ 1
1 Row 0
1 1 Row 1
1 2 1 Row 2
2 is the sum of 1 + 1 and we place it in the next row between the added numbers 1 and 1.
* Row 3 = 1 _ _ 1
1 Row 0
1 1 Row 1
1 <u>2</u> <u>1 </u> Row 2
1 3 <u>3</u> 1 Row 3
1 + 2 = 3 (the row number and the and adding the numbers from the previous row)
* Row 4 = 1 _ _ _ 1
1 Row 0
1 1 Row 1
1 2 1 Row 2
1 <u>3</u><u> </u> <u>3</u> 1 Row 3
1 4 <u>6</u> 4 1 Row 4
1 + 3 = 4 (the row number)
3 +3 = 6
* Row 5 = 1 _ _ _ _ 1
1 Row 0
1 1 Row 1
1 2 1 Row 2
1 3 3 1 Row 3
1 4 6 4 1 Row 4
1 5 10 10 5 1 Row 5
1 + 4 = 5
4 + 6 = 10
* Row 6 = <u>1</u> _ _ _ _ _ <u>1</u>
1 Row 0
1 1 Row 1
1 2 1 Row 2
1 3 3 1 Row 3
1 4 6 4 1 Row 4
1 5 <u>10</u> <u> 10 </u> 5 1 Row 5
1 6 15 <u>20</u> 15 6 1 Row 6
1 + 5 = 6
5 + 10 = 15
10 + 10 = 20
The answer is they all have a factor of 9
Answer:
he has bought 18 rackets.
Step-by-step explanation
papa loves a big juicy peen inside of him