Answer:
<h2>Density = 0.00026 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of air = 1.2 g
volume = 4,555 mL
Substitute the values into the above formula and solve for the density
That's
<h3>

</h3>
= 0.0002634
We have the final answer as
<h3>Density = 0.00026 g/mL</h3>
Hope this helps you
The person would look B) in the nucleus.
Hope this helps!
-Payshence xoxo
B 2
is which shell are the valence electrons of the elements in period 2 found
Answer:
Mole fraction H₂O → 0.72
Mole fraction C₂H₅OH → 0.28
Explanation:
By the mass of the two elements in the solution, we determine the moles of each:
25 g . 1 mol/ 18g = 1.39 moles of water (solute)
25 g . 1 mol / 46 g = 0.543 moles of ethanol (solvent)
Mole fraction solute = Moles of solute / Total moles
Mole fraction solvent = Moles of solvent / Total moles
Total moles = Moles of solute + Moles of solvent
1.39 moles of solute + 0.543 moles of solvent = 1.933 moles → Total moles
Mole fraction H₂O = 1.39 / 1.933 → 0.72
Mole fraction C₂H₅OH= 0.543 / 1.933 → 0.28
Remember that sum of mole fractions = 1
Answer:
The limiting reactant is H₂
Explanation:
The reaction of hydrogen (H₂) and carbon monoxide (CO) to produce methanol (CH₃OH) is the following:
2H₂(g) + CO(g) → CH₃OH(g)
From the balanced chemical equation, we can see that 1 mol of CO reacts wIth 2 moles of H₂. So, the stoichiometric ratio is:
2 mol H₂/1 mol CO = 2.0
We have 500 mol of CO and 750 mol of H₂, so we calculate the ratio to establish a comparison:
750 mol H₂/500 mol CO = 1.5
Since 2.0 > 1.5, we have fewer moles of H₂ than are needed to completely react with 500 moles of CO. In fact, we need 1000 moles of H₂ and we have 750 moles. So, the limiting reactant is H₂.