Answer:
H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)
Explanation:
Let's consider the molecular equation that occurs when aqueous solutions of perchloric acid and potassium hydroxide are combined. This is a neutralization reaction.
HClO₄(aq) + KOH(aq) ⇒ KClO₄(aq) + H₂O(l)
The complete ionic equation includes all the ions and molecular species.
H⁺(aq) + ClO₄⁻(aq) + K⁺(aq) + OH⁻(aq) ⇒ K⁺(aq) + ClO₄⁻(aq) + H₂O(l)
The net ionic equation includes only the ions that participate in the reaction and the molecular species.
H⁺(aq) + OH⁻(aq) ⇒ H₂O(l)
Let the 8% solution be A, the 20% solution be B and the final solution be C.
C = A + B
C = 12 + B
0.16C = 0.08(12) + 0.2(B)
0.16(12 + B) = 0.96 + 0.2B
0.96 = 0.04B
B = 24 Liters
C = 12 + 24
C = 36 Liters
Reaction sequence:
2c(s) + o2(g) -> 2co(g)
fe3o4(s) + 4co(g) -> 3fe(l) + 4co2(g)
According to first equation, 2 moles of carbon produce 2
moles of carbon monoxide. So 1 mole of carbon will produce 1 mol of carbon
monoxide (the same number).
According to the second equation, 4 moles of carbon monoxide
produce 3 moles of iron. We should make the cross multiplication with those
numbers:
4 moles CO/3 moles iron = 1 mol CO/x
x = 1 mol CO*3 moles iron/4 moles CO = 0.75 moles of iron
Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>
In order to find out how many protons a sodium atom has, you have to look at the periodic table. Sodium is Na on the periodic table and you look for the number on the top of the symbol and you can see that it has 11 protons. To find out how many neutrons, you have to subtract 11 from the mass number, which is 23. 23-11 = 12.
12 neutrons; 11 protons