Answer:
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 10²⁵ hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. There is no known limit for long wavelengths, while it is thought that the short wavelength limit is in the vicinity of the Planck length. Extreme ultraviolet, soft X-rays, hard X-rays and gamma rays are classified as ionizing radiation as their photons have enough energy to ionize atoms, causing chemical reactions. Exposure to these rays can be a health hazard, causing radiation sickness, DNA damage and cancer. Radiation of visible light wavelengths and lower are called nonionizing radiation as they cannot cause these effects.
Explanation:
8.97 g/cm^
D=m/v
D=43.5/4.85cm^3
D=8.97 g/cm^3
Answer:
2C(s, graphite)+ 3H₂(g) + ½O₂(g) ⟶ C₂H₅OH(ℓ)
Explanation:
The thermodynamic standard state of elements and compounds is defined as their most stable state at 25 °C and 1 bar
The elements in ethanol, C₂H₅OH, are C, H, and O.
Their most stable states at standard conditions are C₂H₅OH(ℓ), C(s, graphite), H₂(g), and O₂(g)
The equation for the formation of ethanol from its elements is then
2C(s, graphite) + 3H₂(g) + ½O₂(g) ⟶ C₂H₅OH(ℓ)
Answer:
47.8 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O
Finally, we shall determine the number of mole of water, H₂O, produced by the reaction of 23.9 moles of O₂. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O.
Therefore, 23.9 moles of O₂ will react to produce = 23.9 × 2 = 47.8 moles of H₂O.
Thus, 47.8 moles of H₂O were obtained from the reaction.
C i think but you should pick it anyway