Answer
Given,
Energy absorbed, 
Energy expels,
Temperature of cold reservoir, T = 27°C
a) Efficiency of engine



b) Work done by the engine



c) Power output
t = 0.296 s



Answer:
d in my opinion is the most opitmal answer
Explanation:
aka a graph comparing distances traveled by objects thrown on Earth and the moon
I’m guessing b because hydrogen is in your room and maybe eliminate to o but it also can be D
my final is: B!
Answer:
The maximum height of ball 2 is 4 times that of ball 1
Explanation:
We can find the maximum height of each ball by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
is the acceleration of gravity (we take upward as positive direction)
s is the displacement
At the maximum height, s = h and v = 0 (the final velocity is zero), so re-arranging the equation:

The first ball is thrown with initial velocity
, so it reaches a maximum height of
(the quantity will be positive, since g is negative)
The second ball is thrown with initial velocity

so it will reach a maximum height of

So, its maximum height will be 4 times the maximum height reached by ball 1.
Answer:
a)Distance traveled during the first second = 4.905 m.
b)Final velocity at which the object hits the ground = 38.36 m/s
c)Distance traveled during the last second of motion before hitting the ground = 33.45 m
Explanation:
a) We have equation of motion
S = ut + 0.5at²
Here u = 0, and a = g
S = 0.5gt²
Distance traveled during the first second ( t =1 )
S = 0.5 x 9.81 x 1² = 4.905 m
Distance traveled during the first second = 4.905 m.
b) We have equation of motion
v² = u² + 2as
Here u = 0, s= 75 m and a = g
v² = 0² + 2 x g x 75 = 150 x 9.81
v = 38.36 m/s
Final velocity at which the object hits the ground = 38.36 m/s
c) We have S = 0.5gt²
75 = 0.5 x 9.81 x t²
t = 3.91 s
We need to find distance traveled last second
That is
S = 0.5 x 9.81 x 3.91² - 0.5 x 9.81 x 2.91² = 33.45 m
Distance traveled during the last second of motion before hitting the ground = 33.45 m