Hello!
The figure is made up of a cone and a hemisphere. To the nearest whole number, what is the approximate volume of this figure? Use 3.14 to approximate π . Enter your answer in the box. cm³
Data: (Cone)
h (height) = 12 cm
r (radius) = 4 cm (The diameter is 8 being twice the radius)
Adopting: ![\pi \approx 3.14](https://tex.z-dn.net/?f=%5Cpi%20%5Capprox%203.14)
V (volume) = ?
Solving: (Cone volume)
![V = \dfrac{ \pi *r^2*h}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7B%20%5Cpi%20%2Ar%5E2%2Ah%7D%7B3%7D)
![V = \dfrac{ 3.14 *4^2*\diagup\!\!\!\!\!12^4}{\diagup\!\!\!\!3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7B%203.14%20%2A4%5E2%2A%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%2112%5E4%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%213%7D)
![V = 3.14*16*4](https://tex.z-dn.net/?f=V%20%3D%203.14%2A16%2A4)
![\boxed{V = 200.96\:cm^3}](https://tex.z-dn.net/?f=%5Cboxed%7BV%20%3D%20200.96%5C%3Acm%5E3%7D)
Note: Now, let's find the volume of a hemisphere.
Data: (hemisphere volume)
V (volume) = ?
r (radius) = 4 cm
Adopting: ![\pi \approx 3.14](https://tex.z-dn.net/?f=%5Cpi%20%5Capprox%203.14)
If: We know that the volume of a sphere is
, but we have a hemisphere, so the formula will be half the volume of the hemisphere ![V = \dfrac{1}{2}* 4* \pi * \dfrac{r^3}{3} \to \boxed{V = 2* \pi * \dfrac{r^3}{3}}](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%2A%204%2A%20%5Cpi%20%2A%20%5Cdfrac%7Br%5E3%7D%7B3%7D%20%5Cto%20%5Cboxed%7BV%20%3D%202%2A%20%5Cpi%20%2A%20%5Cdfrac%7Br%5E3%7D%7B3%7D%7D)
Formula: (Volume of the hemisphere)
![V = 2* \pi * \dfrac{r^3}{3}](https://tex.z-dn.net/?f=V%20%3D%202%2A%20%5Cpi%20%2A%20%5Cdfrac%7Br%5E3%7D%7B3%7D)
Solving:
![V = 2* \pi * \dfrac{r^3}{3}](https://tex.z-dn.net/?f=V%20%3D%202%2A%20%5Cpi%20%2A%20%5Cdfrac%7Br%5E3%7D%7B3%7D)
![V = 2*3.14 * \dfrac{4^3}{3}](https://tex.z-dn.net/?f=V%20%3D%202%2A3.14%20%2A%20%5Cdfrac%7B4%5E3%7D%7B3%7D)
![V = 2*3.14 * \dfrac{64}{3}](https://tex.z-dn.net/?f=V%20%3D%202%2A3.14%20%2A%20%5Cdfrac%7B64%7D%7B3%7D)
![V = \dfrac{401.92}{3}](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7B401.92%7D%7B3%7D)
![\boxed{ V_{hemisphere} \approx 133.97\:cm^3}](https://tex.z-dn.net/?f=%5Cboxed%7B%20V_%7Bhemisphere%7D%20%5Capprox%20133.97%5C%3Acm%5E3%7D)
What is the approximate volume of this figure?
Now, to find the total volume of the figure, add the values: (cone volume + hemisphere volume)
Volume of the figure = cone volume + hemisphere volume
Volume of the figure = 200.96 cm³ + 133.97 cm³
![\boxed{\boxed{\boxed{V = 334.93\:cm^3 \to Volume\:of\:the\:figure \approx 335\:cm^3 }}}\end{array}}\qquad\quad\checkmark](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cboxed%7BV%20%3D%20334.93%5C%3Acm%5E3%20%5Cto%20Volume%5C%3Aof%5C%3Athe%5C%3Afigure%20%5Capprox%20335%5C%3Acm%5E3%20%7D%7D%7D%5Cend%7Barray%7D%7D%5Cqquad%5Cquad%5Ccheckmark)
Answer:
The volume of the figure is approximately 335 cm³
_______________________
I Hope this helps, greetings ... Dexteright02! =)