Answer:
43-7i
Step-by-step explanation:
We are given the expression:

First, expand 3-4i in 6i+7. To expand binomial with binomial, first we expand 3 in 6i+7 then expand -4i in 6i+7.
![\displaystyle \large{[(3 \cdot 6i) + (3 \cdot 7) + ( - 4i \cdot 6i) + ( - 4i \cdot 7)]- (2 - 3i)} \\ \displaystyle \large{[18i + 21 - 24 {i}^{2} - 28i]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%5B%283%20%5Ccdot%206i%29%20%2B%20%283%20%5Ccdot%207%29%20%2B%20%28%20-%204i%20%5Ccdot%206i%29%20%2B%20%28%20-%204i%20%5Ccdot%207%29%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7B%5B18i%20%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%20-%2028i%5D-%20%282%20-%203i%29%7D%20)
Now combine like terms.
![\displaystyle \large{[ - 10i+ 21 - 24 {i}^{2} ]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%5D-%20%282%20-%203i%29%7D%20)
<u>I</u><u>m</u><u>a</u><u>g</u><u>i</u><u>n</u><u>a</u><u>r</u><u>y</u><u> </u><u>U</u><u>n</u><u>i</u><u>t</u>

Therefore:-
![\displaystyle \large{[ - 10i+ 21 - 24 ( - 1) ]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 21 + 24]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 45]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%20%28%20-%201%29%20%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20%20%2B%2024%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2045%5D-%20%282%20-%203i%29%7D%20)
Then expand negative sign in 2-3i; remember that negative times negative is positive and negative times positive is negative.

Combine like terms.

Answer:
Step-by-step explanation:
Given that among 500 freshmen pursuing a business degree at a university, 315 are enrolled in an economics course, 213 are enrolled in a mathematics course, and 123 are enrolled in both an economics and a mathematics course.
From the above we find that
a) either economics of Math course is

Out of 500 students 405 have taken either Math or Economics
Hence
c) student who have taken neither = 
Exactly one course is either math or economics - both
= 
We can set it up like this, where <em>s </em>is the speed of the canoeist:

To make a common denominator between the fractions, we can multiply the whole equation by s(s-5):
![s(s-5)[\frac{18}{s} + \frac{4}{s-5} = 3] \\ 18(s-5)+4s=3s(s-5) \\ 18s - 90+4s=3 s^{2} -15s](https://tex.z-dn.net/?f=s%28s-5%29%5B%5Cfrac%7B18%7D%7Bs%7D%20%2B%20%5Cfrac%7B4%7D%7Bs-5%7D%20%3D%203%5D%20%5C%5C%2018%28s-5%29%2B4s%3D3s%28s-5%29%20%5C%5C%2018s%20-%2090%2B4s%3D3%20s%5E%7B2%7D%20-15s)
If we rearrange this, we can turn it into a quadratic equation and factor:

Technically, either of these solutions would work when plugged into the original equation, but I would use the second solution because it's a little "neater." We have the speed for the first part of the trip (9 mph); now we just need to subtract 5mph to get the speed for the second part of the trip.

The canoeist's speed on the first part of the trip was 9mph, and their speed on the second part was 4mph.
6-3=3, so m=3. Easy as pie