Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
The answer is D
Hope this helps
Answer:
The relationship between the wave's amplitude and frequency is such that it is inversely proportional to the frequency. The amplitude decreases as the frequency increases. The amplitude increases as the frequency decreases. The higher the energy of a wave, the higher the amplitude. The lower the energy, the lower the amplitude. Energy has no effect on wavelength, speed, or frequency, only the amplitude.
Explanation:
Well,
A = T or U
C = G
G = C
T or U = A
So it would be like this;
DNA Sequence: GCTAATTGCATCCGA
The Complementary Sequence: CGATTAACGTAGGCT
Hope this helped :)