1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katen [24]
3 years ago
8

One block rests upon a horizontal surface. A second identical block rests upon the first one. The coefficient of static friction

between the blocks is the same as the coefficient of static friction between the lower block and the horizontal surface. A horizontal force is applied to the upper block, and its magnitude is slowly increased. When the force reaches 41.6 N, the upper block just begins to slide. The force is then removed from the upper block, and the blocks are returned to their original configuration. What is the magnitude of the horizontal force that should be applied to the lower block, so that it just begins to slide out from under the upper block?

Physics
1 answer:
goblinko [34]3 years ago
4 0

Answer:

The magnitud of the force is 124.8N.

Explanation:

First we have to find the value of the static friction coefficient, when the external force F is applied to upper block (i will call it A Block) we have a free body diagram as the one shown in the figure i attached, so since this block has no aceleration in any direction the force F should be equal to the friction force between A and B block, one we noticed this we can use the equation for the Friction force to find the coefficient:

0=F-FrictionAB

F=FrictionAB=Nab*μs

and again, since the block has no acceleration the normal between A and B block should be equal to the weigth of the first block, so we have:

0=Nab-W

Nab=W=mg

replacing this we have:

F=μs*Nab=μs*mg=41.6N

and  μs=41.6N/(mg)

now it's time to see the free body diagram for the b block, if we now apply the F force to the B block the diagram should look like in the figure.

the color of the arrow gives you an idea of where the force comes from, the blue ones comes from the B block, the red ones from the A block and the brown ones from the ground.

now for the B block you can see two friction forces, one for the ground and one for the A block, both of these directed bacwards, and two normal forces, again one for the ground and one for the A block but the normal force for the A block is aiming downwards.

again we use the fact that the block is not accelerating in any direction so the sum of the forces in x and y direction have to be 0, so:

F-Friction1(ground)-Friction2(AB)=0

This is the new external F force that we are looking for:

F=Friction1(ground)+Friction2(AB)

we know Friction2(AB) because we found that in the previous block so:

F=Friction1(ground)+mg*μs

for the other friction we have to use the equation:

Friction(ground)=N(ground)*μs

from y axis we have:

N(ground)-w-Normal(AB)=0

N(ground)=w+Normal(AB)

we found the value of Normal(AB) with the previous block so:

N(ground)=mg+mg=2mg

and:

Friction(ground)=2mg*μs

F=Friction(ground)+mg*μs

F=2mg*μs+μs*mg=3mg*μs

and since: μs*mg=41.6N

the new F force would be:

F=3mg*μs=41.6*3=124.8N

You might be interested in
What usually results when an organism fails to maintain homeostasis?
dedylja [7]
The organism may become ill or die
3 0
3 years ago
Read 2 more answers
A machine shop worker reports the mass of an aluminum cube as 176 g. If one side of the cube measures 4 cm, what is the density
Zarrin [17]

-- Since it's a cube, its length, width, and height are all the same 4 cm .

-- Its volume is (length x width x height) = 64 cm³ .

-- Density = (mass) / (volume)

                = (176 g) / (64 cm³) 

                =         2.75 gm/cm³ .

6 0
3 years ago
A resistor, capacitor, and switch are all connected in series to an ideal battery of constant terminal voltage. Initially, the s
erma4kov [3.2K]

Answer:

The voltage across the resistor is zero, and the voltage across the capacitor is equal to the terminal voltage of the battery.

Explanation:

This is because when a capacitor is charged no current or voltage flows through it so it will have a voltage equal to the terminal voltage of the battery

6 0
4 years ago
A car is moving in uniform circular motion. If the cars speed were to double to keep the car moving with the same radius the acc
Stells [14]

Answer:

<em>The centripetal acceleration would increase by a factor of 4</em>

<em>Correct choice: B.</em>

Explanation:

<u>Circular Motion</u>

The circular motion is described when an object rotates about a fixed point called center. The distance from the object to the center is the radius. There are other magnitudes in the circular motion like the angular speed, tangent speed, and centripetal acceleration. The formulas are:

v_t=w\ r

\displaystyle a_c=\frac{v_t^2}{r}

If the speed is doubled and the radius is the same, then

\displaystyle a_c=\frac{(2v_t)^2}{r}

\displaystyle a_c=4\frac{v_t^2}{r}

The centripetal acceleration would increase by a factor of 4

Correct choice: B.

5 0
3 years ago
Choose all facts that increase the orbital velocity of a vessel around planet B. Bigger mass of planet B smaller mass of planet
telo118 [61]

Answer:

- Bigger mass of planet B  

- orbiting closer to planet B

Explanation:

The orbital velocity of the vessel around the planet can be found by equalizing the force of gravity between the vessel and the planet and the centripetal force:

G\frac{mM}{r^2}=m\frac{v^2}{r}

where

G is the gravitational constant

m is the mass of the vessel

M is the mass of the planet

r is the distance between the vessel and the centre of the planet

v is the orbital velocity of the vessel

Re-arranging the formula, we find an expression for v:

v=\sqrt{\frac{GM}{r}}

We see that:

- the bigger the mass of the planet, M, the bigger the velocity

- the bigger the distance between the vessel and the planet, r, the smaller the velocity

So, the correct choices that increase the orbital velocity are:

- Bigger mass of planet B  

- orbiting closer to planet B

6 0
3 years ago
Other questions:
  • The mass of Planet X is one-tenth that of the earth, and its diameter is one-half that of the earth. the acceleration due to gra
    12·1 answer
  • An element is made up of
    12·2 answers
  • Explain how earths lithosphere and asthenosphere work together
    6·1 answer
  • A single-engine helicopter has two rotors; a main rotor and a tail rotor. The main rotor has a diameter of 14.4 m and rotates at
    9·1 answer
  • A 10.00 kg mass is attached to a 250N/m spring and set into vertical oscillation. When the mass is 0.50m above the equilibrium i
    15·1 answer
  • The function​ s(t) represents the position of an object at time t moving along a line. Suppose s( 1 )=123 and s( 3 )=173. Find t
    9·1 answer
  • A 2,200 kg car moving at 18 m/s hits a barrier and comes to a stop. How much work is done to bring the car to a stop?3.6 x 105J3
    11·1 answer
  • The space craft has a mass of 100kg its velocity increases from 20m/s to 50m/s in 10s. what force is acting on the space craft?​
    9·1 answer
  • A solution is...
    8·1 answer
  • The conservation of momentum is most closely related to Newton's?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!