This is a relation but not a function.
Functions must have that there is a unique y for a given x, which clearly doesn't work here because all lines of a given x have 2 y-values. However, it is a relation because there is a given set of points which are defined to be within the set of the ellipse (if it's defined which members of two sets, the range and domain, go together, then you have a relation)
Answer:
and 
Step-by-step explanation:
Given
Bisector: CD
of Line AB
Required
Apply Pythagoras Theorem
From the question, CD bisects AB and it bisects it at D.
The relationship between AB and CD is given by the attachment
Considering ACD
From the attachment, we have that:



By Pythagoras Theorem, we have

Considering CBD
From the attachment, we have that:



By Pythagoras Theorem, we have:

Answer:
I think that's right. I checked my answer and proved it on that sheet.
The formula for the law of sines is:
sin(A)/a = sin(B)/b = sin(C)/c
Big letters denote angle measures while smaller letters denote side lengths.
I think it’s 4,230
explanation: