Answer:
Expected number of hours before the the group exits the building = E[Number of hours] = 3.2 hours
Step-by-step explanation:
Expected value, E(X) is given as
E(X) = Σ xᵢpᵢ
xᵢ = each variable
pᵢ = probability of each variable
Let X represent the number of hours before exiting the building taking each door. Note that D = Door
D | X | P(X)
1 | 3.0 | 0.2
2 | 3.5 | 0.1
3 | 5.0 | 0.2
4 | 2.5 | 0.5
E(X) = (3×0.2) + (3.5×0.1) + (5×0.2) + (2.5×0.5) = 3.2 hours
Hope this Helps!!!
It will be
3 4/14+2 3/14+4 6/14=9 13/14
P - 4 is common to the 2 parts so we have
(2y^2 - 7)(p - 4) Answer
It might be 90in
Because it’s asking if the prism below