1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
4 years ago
10

What is the slope of s=2.75p + 52

Mathematics
1 answer:
madam [21]4 years ago
6 0
Equation of the linear line is usually written in the standatd form y=mx+c where m is the slope anf c is the y-intercept.
comparing the equation in the question to this one, you will find that the slope is 2.75
You might be interested in
Can someone help me
Elan Coil [88]
The last choice because all the numbers are plotted correctly
3 0
4 years ago
Please help <br> is not a exam is a activity
Mars2501 [29]

Answer:

y= 5x

Step-by-step explanation:

since each x number is 1/5 of the y, it's 5 times x = y

8 0
3 years ago
Surface Area <br> Help fast
torisob [31]

Answer:

Perimeter of base: 18

Height: 8

Base Area: 12

SA: 216

7 0
3 years ago
What is the mean of the following data values 53,71, 89,10,87
lesya692 [45]
Well the way you would do it is you would add all of them up and then divide them by how much there is so the numbers added up give you 310 divided by 5 is 62 hop this helps!!!
3 0
4 years ago
Read 2 more answers
Convert the given system of equations to matrix form
yuradex [85]

Answer:

The matrix form of the system of equations is \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right] \left[\begin{array}{c}x&y&w&z&u\end{array}\right] =\left[\begin{array}{c}5&4&3\end{array}\right]

The reduced row echelon form is \left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

The vector form of the general solution for this system is \left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Step-by-step explanation:

  • <em>Convert the given system of equations to matrix form</em>

We have the following system of linear equations:

x+y+w+z-3u=5\\x-y-2w+z+2u=4\\2x+w-z+u=3

To arrange this system in matrix form (Ax = b), we need the coefficient matrix (A), the variable matrix (x), and the constant matrix (b).

so

A= \left[\begin{array}{ccccc}1&1&1&1&-3\\1&-1&-2&1&2\\2&0&1&-1&1\end{array}\right]

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]

b=\left[\begin{array}{c}5&4&3\end{array}\right]

  • <em>Use row operations to put the augmented matrix in echelon form.</em>

An augmented matrix for a system of equations is the matrix obtained by appending the columns of b to the right of those of A.

So for our system the augmented matrix is:

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\1&-1&-2&1&2&4\\2&0&1&-1&1&3\end{array}\right]

To transform the augmented matrix to reduced row echelon form we need to follow this row operations:

  • add -1 times the 1st row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\2&0&1&-1&1&3\end{array}\right]

  • add -2 times the 1st row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&-2&-3&0&5&-1\\0&-2&-1&-3&7&-7\end{array}\right]

  • multiply the 2nd row by -1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&-2&-1&-3&7&-7\end{array}\right]

  • add 2 times the 2nd row to the 3rd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&2&-3&2&-6\end{array}\right]

  • multiply the 3rd row by 1/2

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&3/2&0&-5/2&1/2\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -3/2 times the 3rd row to the 2nd row

\left[\begin{array}{ccccc|c}1&1&1&1&-3&5\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 3rd row to the 1st row

\left[\begin{array}{ccccc|c}1&1&0&5/2&-4&8\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • add -1 times the 2nd row to the 1st row

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

  • <em>Find the solutions set and put in vector form.</em>

<u>Interpret the reduced row echelon form:</u>

The reduced row echelon form of the augmented matrix is

\left[\begin{array}{ccccc|c}1&0&0&1/4&0&3\\0&1&0&9/4&-4&5\\0&0&1&-3/2&1&-3\end{array}\right]

which corresponds to the system:

x+1/4\cdot z=3\\y+9/4\cdot z-4u=5\\w-3/2\cdot z+u=-3

We can solve for <em>z:</em>

<em>z=\frac{2}{3}(u+w+3)</em>

and replace this value into the other two equations

<em>x+1/4 \cdot (\frac{2}{3}(u+w+3))=3\\x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}</em>

y+9/4 \cdot (\frac{2}{3}(u+w+3))-4u=5\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}

No equation of this system has a form zero = nonzero; Therefore, the system is consistent. The system has infinitely many solutions:

<em>x=-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}\\y=\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}\\z=\frac{2u}{3}+\frac{2w}{3}+2</em>

where <em>u</em> and <em>w</em> are free variables.

We put all 5 variables into a column vector, in order, x,y,w,z,u

x=\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=\left[\begin{array}{c}-\frac{u}{6} -\frac{w}{6}+\frac{5}{2}&\frac{5u}{2}-\frac{3w}{2}+\frac{1}{2}&w&\frac{2u}{3}+\frac{2w}{3}+2&u\end{array}\right]

Next we break it up into 3 vectors, the one with all u's, the one with all w's and the one with all constants:

\left[\begin{array}{c}-\frac{u}{6}&\frac{5u}{2}&0&\frac{2u}{3}&u\end{array}\right]+\left[\begin{array}{c}-\frac{w}{6}&-\frac{3w}{2}&w&\frac{2w}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

Next we factor <em>u</em> out of the first vector and <em>w</em> out of the second:

u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

The vector form of the general solution is

\left[\begin{array}{c}x&y&w&z&u\end{array}\right]=u\left[\begin{array}{c}-\frac{1}{6}&\frac{5}{2}&0&\frac{2}{3}&1\end{array}\right]+w\left[\begin{array}{c}-\frac{1}{6}&-\frac{3}{2}&1&\frac{2}{3}&0\end{array}\right]+\left[\begin{array}{c}\frac{5}{2}&\frac{1}{2}&0&2&0\end{array}\right]

7 0
4 years ago
Other questions:
  • What are the angles of rotation for a 15 gon
    7·1 answer
  • F(x) = square root x - 5 find f^-1
    5·1 answer
  • Simplify the ratio 18 : 30 : 72
    9·2 answers
  • Could someone help please, i'm having some trouble, its pretty easy
    5·1 answer
  • Which list contains only rational numbers?
    7·2 answers
  • Can someone help me find x please
    15·1 answer
  • If f(x)=3x^2-4 and g(x)=5x+1, find fog(4) and gof(4)
    14·1 answer
  • Check all of the ordered pairs that satisfy the equation below.<br> y= 6x
    8·1 answer
  • The future population of a small european country of 14 million people
    9·1 answer
  • PLEASE HELP! INSTA BRAINLY
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!