Time period of pendulum is given by

Here,
L is length
g is acceleration due to gravity
Therefore we can determine that the period of the pendulum is directly proportional to the square root of the length of the rope.

Therefore, it is necessary to increase the length of the rope to increase the period so that it counts the seconds more slowly. The correct answer is A.
Answer:
Diagram A will reach the top first.
Explanation:
If it is going straight, it will go slower. The higher the movement speed the faster it is. Hope this helps!
Answer:
a) m = 59.63 [kg]
b) Wm = 95.41 [N]
Explanation:
El peso de un cuerpo se define como el producto de la masa por la aceleración gravitacional. DE esta manera tenemos:
W = m*g
Donde:
m = masa [kg]
g = gravedad = 9.81 [m/s^2]
m = W / g
m = 585 / 9.81
m = 59.63 [kg]
Es importante aclarar que la masa se conserva independientemente de la ubicación del cuerpo en el espacio.
Por ende su masa sera la misma en la luna.
El peso en la luna se calcula como Wm y es igual a:
Wm = 59.63 * 1.6 = 95.41 [N]
Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 

If he wants to increase power, force must increase and decrease time.