1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
3 years ago
13

A single-slit diffraction pattern is formed by monochromatic electromagnetic radiation from a distant source passing through a s

lit 0.107 mm wide. At the point in the pattern which is an angular distance of 3.09° from the center of the central maximum, the total phase difference between wavelets from the top and bottom of the slit is 56.0 rad.
a) What is the wavelenght of the radiation?
b) What is the intensity at this point, if the intensity at the center of the central maximum is I/O?
Physics
1 answer:
tatiyna3 years ago
8 0

Answer:

a. λ = 647.2 nm

b. I₀  9.36 x 10⁻⁵

Explanation:

Given:

β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m

a.

The wavelength of the radiation can be find using

β = 2 π / γ * sin θ

λ = [ 2π * γ * sin θ ] / β

λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad

λ = 647.14 x 10⁻⁹ m  ⇒  λ = 647.2 nm

b.

The intensity of the central maximum I₀

I = I₀ (4 / β² ) * sin ( β / 2)²

I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²

I = I₀  9.36 x 10⁻⁵

You might be interested in
What does the term “energy crisis” mean?
Zielflug [23.3K]
An energy crisis<span> is any significant (bottleneck; logistics; or price rise) in the supply of energy resources to an economy. In popular literature, it often refers to one of the energy sources used at a certain time and place, in particular those that supply national electricity grids or those used as fuel in vehicles.</span>
5 0
4 years ago
The greenhouse effect traps the sun's energy on Earth similar to
Gre4nikov [31]
D is the answer on this
5 0
3 years ago
For a freely falling object weighing 3 kg : A. what is the object's velocity 2 s after it's release. B. What is the kinetic ener
Fed [463]

A) 19.6 m/s (downward)

B) 576 J

C) 19.6 m

D) Velocity: not affected, kinetic energy: doubles, distance: not affected

Explanation:

A)

An object in free fall is acted upon one force only, which is the force of gravity.

Therefore, the motion of an object in free fall is a uniformly accelerated motion (constant acceleration). Therefore, we can find its velocity by applying the following suvat equation:

v=u+at

where:

v is the velocity at time t

u is the initial velocity

a=g=9.8 m/s^2 is the acceleration due to gravity

For the object in this problem, taking downward as positive direction, we have:

u=0 (the object starts from rest)

a=9.8 m/s^2

Therefore, the velocity after

t = 2 s

is:

v=0+(9.8)(2)=19.6 m/s (downward)

B)

The kinetic energy of an object is the energy possessed by the object due to its motion.

It can be calculated using the equation:

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

For the object in the problem, at t = 2 s, we have:

m = 3 kg (mass of the object)

v = 19.6 m/s (speed of the object)

Therefore, its kinetic energy is:

KE=\frac{1}{2}(3)(19.6)^2=576 J

C)

In order to find how far the object has fallen, we can use another suvat equation for uniformly accelerated motion:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

For the object in free fall in this problem, we have:

u = 0 (it starts from rest)

a=g=9.8 m/s^2 (acceleration of gravity)

t = 2 s (time)

Therefore, the distance covered is

s=0+\frac{1}{2}(9.8)(2)^2=19.6 m

D)

Here the mass of the object has been doubled, so now it is

M = 6 kg

For part A) (final velocity of the object), we notice that the equation that we use to find the velocity does not depend at all on the mass of the object. This means that the value of the final velocity is not affected.

For part B) (kinetic energy), we notice that the kinetic energy depends on the mass, so in this case this value has changed.

The new kinetic energy is

KE'=\frac{1}{2}Mv^2

where

M = 6 kg is the new mass

v = 19.6 m/s is the speed

Substituting,

KE'=\frac{1}{2}(6)(19.6)^2=1152 J

And we see that this value is twice the value calculated in part A: so, the kinetic energy has doubled.

Finally, for part c) (distance covered), we see that its equation does not depend on the mass, therefore this value is not affected.

5 0
3 years ago
Starting from the front door of your ranch house, you walk 50.0 m due east to your windmill, and then you turn around and slowly
Hunter-Best [27]

Answer:

Average velocity

v=\frac{d}{t}\\ v=\frac{10m}{70s}\\v=.1428 \frac{m}{s}

Average speed,

S=\frac{D}{t}\\ S=\frac{90}{70}\\ S=1.29\frac{m}{s}

Explanation:

(a)Average velocity

We have to find the average velocity. We know that velocity is defined as the rate of change of displacement with respect to time.

To find the average velocity we have to find the total displacement.

since displacement along east direction is 50m

and displacement along west=40m

so total displacement,

d=50m-40m\\d=10m

total time,

t=28 s+42 s\\t=70 s

therefore, average velocity

v=\frac{d}{t}\\ v=\frac{10m}{70s}\\v=.1428 \frac{m}{s}

(b)Average Speed:

Average speed is defined as the ratio of total distance to the total time

it means

Average speed= total distance/total time

here total distance,

D= 50m+40m\\D=90m

and total time,

t= 28s+40s\\t=70s

therefore,

Average speed,

S=\frac{D}{t}\\ S=\frac{90}{70}\\ S=1.29\frac{m}{s}

8 0
3 years ago
If an object on a horizontal frictionless surface is attached to a spring, displaced, and then released, it oscillates. Suppose
Volgvan

Answer:

a) A=0.125 m

b) T = 1.72 s

c) f= 0.58 Hz

Explanation:

a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m

b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it  has passed through the equilibrium point only once.

This means that the period must be exactly the double of this time:

T = 2*0. 860 sec = 1.72 sec.

c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency  f as follows:

f = 1/T = 1/ 1.72 s= 0.58 Hz

8 0
3 years ago
Other questions:
  • An electric motor rotating a workshop grinding wheel at a rate of 1.31 ✕ 102 rev/min is switched off. Assume the wheel has a con
    13·1 answer
  • A 730 N student stands in the middle of a frozen pond having a radius of 5.8 m. He is unable to get to the other side because of
    8·1 answer
  • Which of the following items can enter and exit an isolated system?
    14·1 answer
  • A 26-cm-long wire with a linear density of 20 g/m passes across the open end of an 86-cm-long open-closed tube of air. If the wi
    9·1 answer
  • NEED HELP PLEASE !!!!!!!!!!!!!!!!!!!!!!!!!!
    10·1 answer
  • A remote control car is traveling at a velocity of 0.50 m/s when it hits a wall and comes to a stop in 0.050 seconds. What is th
    13·1 answer
  • Excessive washing of the skin disrupts the natural growth of bacteria on the skin's surface, increasing the
    8·2 answers
  • Help! I don’t really know what it’s asking
    7·1 answer
  • A constant force of 8N acting on an object displaces it through a distance of 3.0 m in the direction of force. Calculate work-do
    6·1 answer
  • A cyclist going downhill is accelerating at 1. 2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!