1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
5

Hydrogen gas was cooled from 150c to 50c. its new volume is 75.0 ml. what was its original volume

Physics
1 answer:
KatRina [158]3 years ago
6 0
From the information given, the hydrogen gas was cooled from a temperature of 150 °C to 50 °C. The final volume of the gas after being cooled came to 75ml. To find out its original volume, we need to apply Charles law which is expressed as : V1 /T1 = V2 /T2 Where V1 is original volume Where T1 is original temperature Where V2 is the final volume Where T2 is the final temperature. We need V1 so V1 = (V2 × T1) ÷ T2 V1 = (75 × 150) ÷ 50 V1 = 225 ml Original volume of the gas was 225 ml
You might be interested in
Three charged particles are positioned in the xy plane: a 50-nC charge at y = 6 m on the y axis, a −80-nC charge at x = −4 m on
disa [49]

Answer:

V = 48 Volts

Explanation:

Since we know that electric potential is a scalar quantity

So here total potential of a point is sum of potential due to each charge

It is given as

V = V_1 + V_2 + V_3

here we have potential due to 50 nC placed at y = 6 m

V_1 = \frac{kQ}{r}

V_1 = \frac{(9\times 10^9)(50 \times 10^{-9})}{\sqrt{6^2 + 8^2}}

V_1 = 45 Volts

Now potential due to -80 nC charge placed at x = -4

V_2 = \frac{kQ}{r}

V_2 = \frac{(9\times 10^9)(-80 \times 10^{-9})}{12}

V_2 = -60 Volts

Now potential due to 70 nC placed at y = -6 m

V_3 = \frac{kQ}{r}

V_3 = \frac{(9\times 10^9)(70 \times 10^{-9})}{\sqrt{6^2 + 8^2}}

V_3 = 63 Volts

Now total potential at this point is given as

V = 45 - 60 + 63 = 48 Volts

3 0
3 years ago
A basketball player passes a ball to a teammate at a velocity of 6 m/s. The ball has a mass of 0.51 kg. If the original player h
Vilka [71]

We can solve the problem by using conservation of momentum.

The player + ball system is an isolated system (there is no net force on it), therefore the total momentum must be conserved. Assuming the player is initially at rest with the ball, the total initial momentum is zero:

p_i = 0

The total final momentum is:

p_f = p_p + p_b

where p_p is the momentum of the player and p_b is the momentum of the ball.

The momentum of the ball is: p_b = mv=(0.51 kg)(6 m/s)=3.06 kg m/s

While the momentum of the player is: p_p = Mv_p, where M=59 kg is the player's mass and vp is his velocity. Since momentum must be conserved,

p_f = p_i = 0

so we can write

p_f = Mv_p + p_b =0

and we find

v_p = -\frac{p_b}{M}=-\frac{3.06 kg m/s}{59 kg}=-0.052 m/s

and the negative sign means that it is in the opposite direction of the ball.

8 0
4 years ago
Read 2 more answers
A small, 0.100 kg cart is moving at 1.20 m/s on a frictionless track when it collides with a larger, 1.00 kg cart at rest. After
spayn [35]

Answer:

V_2=0.205m/s

Explanation:

From the question we are told that

Moving Mass m_1=0.1kg

Velocity of cart u_1=1.20 m/s

Stationary Mass m_2= 1.00 kg

Recoil velocity V_1=0.850 m/s

Generally the equation of momentum is mathematically given by

m_1u_1+0=m_1v_1+m_2v_2

(0.1)(1.20)+0=(0.1)(-0.850)+(1)v_2

V_2=0.205m/s

Therefore speed of the stationary mass after collision is V_2=0.205m/s

4 0
3 years ago
Widely accepted scientific principles do not change. true or false​
nikklg [1K]

Answer:

False

Explanation:

As technology advances and new evidence is found which either contradicts or supports accepted scientific principles, the principles are susceptible to change.

3 0
3 years ago
El sistema de la figura está formado por una línea semi-infinita, una línea de longitud finita de longitud “a” (ambas uniformes,
Brrunno [24]

Answer:

E_{r}=1,19*10^{5}  \alpha =19,2° q=1,31C

Explanation:

Se descomponen los diferentes campos eléctricos sobre el punto P, en cuatro casos, cada uno correspondiente a un eje de coordenadas x(i) o y(j).

<em>Campo eléctrico producido por una carga Q distribuida superficialmente “σ” en disco de radio R, sobre un punto “P” que está a una distancia “y” sobre su eje de simetría axial: </em>

E_{1} =k*2*\pi *\sigma *(1- \frac{y}{\sqrt{y^{2} +r^{2}}}) Donde "k" es la constante de la ley de Coulomb, sigma (δ) es la densidad superficial, y es la distancia en el eje "y" en el que se encuentra el disco de P, y "r" es el radio del disco. También sabemos que el campo resultante tiene como dirección el eje negativo en y, que es (-j). Sustituyendo queda:

E_{1} =(9*10^{9})*2*\pi *(8,5*10^{-6}) *(1- \frac{(2*10^{-2})}{\sqrt{(2*10^{-2})^{2} +(2*10^{-2} )^{2}}}) (-j)

Entonces:

E_{1} =1,41*10^{5} (-j) N/C

<em>Campo eléctrico producido por una carga Q distribuida linealmente “λ” a lo largo de una barra de longitud “L”, sobre un punto “P” que está a una distancia “d” sobre su eje de simetría longitudinal: </em>

<em></em>E_{2}=\frac{k*\lambda*L}{d(L+d)}<em> </em>Donde "k" es la constante de la ley de Coulomb, "lambda" (λ) es la densidad lineal, "L" es la longitud de la línea, y "d" es la distancia entre el punto P y la línea. Sabemos también que el campo eléctrico resultante tiene como dirección el eje negativo en x, que es (-i).

Sustituyendo tenemos:

E_{2}=\frac{(9*10^{9})*(0.5*10^{-6} )*(2*10^{-2})}{(2*10^{-2})((2*10^{-2})+(2*10^{-2}))} (-i)

Entonces:

E_{2}=1,13*10^{5}(-i) N/C

<em>Campo eléctrico resultante de una carga en un punto específico: </em>

E_{3}=\frac{k*|Q|}{r^{2} } Donde "k" es la constante de la ley de Coulomb, "Q" es el valor absoluto de la carga, y "r" es la distancia entre la carga y el punto P. Sabemos también que el campo eléctrico resultante tiene como dirección el eje positivo en y, que es (j).

Sustituyendo tenemos:

E_{3}=\frac{(9*10^{9} )*(8*10^{-9} )}{(2*10^{-2})^{2} }(j)

Entonces:

E_{3}=1,8*10^{5}(j)N/C

<em>Campo eléctrico producido por una carga Q distribuida linealmente “λ” a lo largo de una barra de longitud “L”, sobre un punto “P” que está a una distancia “d” sobre su eje de simetría longitudinal (LÍNEA SEMI-INFINITA): </em>

E_{4}=\frac{k*\lambda}{d} Donde "k" es la constante de la ley de Coulomb, "lambda" es la densidad linear y "d" es la distancia entre la línea y el punto P. Sabemos también que el campo eléctrico resultante tiene como dirección el eje positivo en y, que es (i).

Sustituyendo tenemos:

E_{4}=2,25*10^{5} (i)N/C

<em>Calcular el campo eléctrico resultante en cada eje: </em>

Una vez que calculamos cada campo eléctrico resultante, debemos hacer las sumas algebraicas, recordando que cuando una fuerza va hacia arriba o hacia la derecha es positiva, y si va hacia abajo o hacia la izquierda es negativa.

E_{x} = E_{4} -E_{2}

E_{x} = (2,25*10^{5})-(1,13*10^{5})

E_{x} = 1,12*10^{5} (i)N/C

E_{y} = E_{3} -E_{1}

E_{y} = (1,8*10^{5})-(1,41*10^{5})

E_{y} =3,9*10^{4} (j)N/C

Calcular el campo eléctrico resultante:

Una vez que tenemos el campo eléctrico resultante en cada eje, podemos calcular el campo eléctrico resultante entre ellos, utilizando la tangente para calcular el ángulo resultante.

Tng\alpha =\frac{E_{y}}{E_{x}}

Tng\alpha =\frac{(3,9*10^{4})}{(1,12*10^{5})}

Tng\alpha =0,35

\alpha =arctng(0,35)

\alpha =19,2°

Sen\alpha =\frac{E_{y} }{E_{r}}

E_{r}=\frac{E_{y}}{Sen\alpha }

E_{r}=\frac{(3,9*10^{4})}{Sen(19,2)}

E_{r}=1,19*10^{5} N/C

<em>Calcular el valor de q:</em>

Despejamos el valor de q a partir de la fórmula de aceleración que es:

a=\frac{q*E}{m} sabiendo que "a" es la aceleración, "q" es el valor de la carga, "E" es el valor del campo eléctrico y "m" es el valor de la masa de la carga.

Despejando queda:

q=\frac{a*m}{E}

Sustituyendo queda:

q=\frac{(6,25*10^{8})*(2,5*10^{-4})}{(1,19*10^{5})}

Entonces, finalmente:

q=1,31 C

4 0
3 years ago
Other questions:
  • ________ is a force acting through distance.
    8·1 answer
  • Complete this sentence. The solubility of a sample will ____________ when the size of the sample increases.
    5·1 answer
  • 1. A student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.
    6·1 answer
  • [10 points]
    11·2 answers
  • Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
    10·1 answer
  • A copper wire has a square cross section 2.1 mm on a side. The wire is 4.3 m long and carries a current of 3.6 A. The density of
    10·1 answer
  • g A cylinder of mass m is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
    5·1 answer
  • Spider-Man and Ned were testing the distance he could shoot his web depending on the angle at which he points his web shooter. H
    14·2 answers
  • Which of the following is a mixture?
    13·1 answer
  • two porters are available to carry a long timber wood.out of them one is weak.how to do you make less load to the weak one? writ
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!