There are two ways to evaluate the square root of 864: using a calculator, and simplifying the root.
The first method is simplifying the root. While this doesn't give you an exact value, it reduces the number inside the root.
Find the prime factorization of 864:

Take any number that is repeated twice in the square root, and move it outside of the root:





The simplified form of √864 will be 12√6.
The second method is evaluating the root. Using a calculator, we can find the exact value of √864.
Plugged into a calculator and rounded to the nearest hundredths value, √864 is equal to 29.39. Because square roots can be negative or positive when evaluated, this means that √864 is equal to ±29.39.
Answer:
16/13
Step-by-step explanation:
Multiple inverse for 13/16 is 16/13
Step-by-step explanation:
Given sets are :
A = {1,2,3,4} and B = {a,b,c}
(i)
Answer:
$11,200
Step-by-step explanation:
Just multiply the percent times the total
8% * 140000 = .08 * 140000 = 11200
<span>If f(x) = 2x + 3 and g(x) = (x - 3)/2,
what is the value of f[g(-5)]?
f[g(-5)] means substitute -5 for x in the right side of g(x),
simplify, then substitute what you get for x in the right
side of f(x), then simplify.
It's a "double substitution".
To find f[g(-5)], work it from the inside out.
In f[g(-5)], do only the inside part first.
In this case the inside part if the red part g(-5)
g(-5) means to substitute -5 for x in
g(x) = (x - 3)/2
So we take out the x's and we have
g( ) = ( - 3)/2
Now we put -5's where we took out the x's, and we now
have
g(-5) = (-5 - 3)/2
Then we simplify:
g(-5) = (-8)/2
g(-5) = -4
Now we have the g(-5)]
f[g(-5)]
means to substitute g(-5) for x in
f[x] = 2x + 3
So we take out the x's and we have
f[ ] = 2[ ] + 3
Now we put g(-5)'s where we took out the x's, and we
now have
f[g(-5)] = 2[g(-5)] + 3
But we have now found that g(-5) = -4, we can put
that in place of the g(-5)'s and we get
f[g(-5)] = f[-4]
But then
f(-4) means to substitute -4 for x in
f(x) = 2x + 3
so
f(-4) = 2(-4) + 3
then we simplify
f(-4) = -8 + 3
f(-4) = -5
So
f[g(-5)] = f(-4) = -5</span>