Answer:
30 flights are expected to be late.
Step-by-step explanation:
Consider the provided information.
A Department of Transportation report about air travel found that nationwide, 76% of all flights are on time.
That means 100-76% = 24% of all flights are not on time.
125 randomly selected flights.
We need to find flights would you expect to be late.
Flight expect to be late E(x) = nq
Here n is 125 and the probability of late is 24 or q = 0.24
Thus substitute the respective values in the above formula.
Flight expect to be late E(x) = 125 × 0.24 = 30
Hence, the 30 flights are expected to be late.
Answer:
Step-by-step explanation:
√2x(7 + √2x)
7√2x + √2x ·√2x
7√2x + 2x
or
2x + 7√2x
A is the answer
Pi<span> (π) is the ratio of the circumference of a circle to its diameter. It doesn't matter how big or small the circle is - the ratio stays the same. Properties like this that stay the same when you change other attributes are called constants.
</span>
The solution to this system set is: "x = 4" , "y = 0" ; or write as: [4, 0] .
________________________________________________________
Given:
________________________________________________________
y = - 4x + 16 ;
4y − x + 4 = 0 ;
________________________________________________________
"Solve the system using substitution" .
________________________________________________________
First, let us simplify the second equation given, to get rid of the "0" ;
→ 4y − x + 4 = 0 ;
Subtract "4" from each side of the equation ;
→ 4y − x + 4 − 4 = 0 − 4 ;
→ 4y − x = -4 ;
________________________________________________________
So, we can now rewrite the two (2) equations in the given system:
________________________________________________________
y = - 4x + 16 ; ===> Refer to this as "Equation 1" ;
4y − x = -4 ; ===> Refer to this as "Equation 2" ;
________________________________________________________
Solve for "x" and "y" ; using "substitution" :
________________________________________________________
We are given, as "Equation 1" ;
→ " y = - 4x + 16 " ;
_______________________________________________________
→ Plug in this value for [all of] the value[s] for "y" into {"Equation 2"} ;
to solve for "x" ; as follows:
_______________________________________________________
Note: "Equation 2" :
→ " 4y − x = - 4 " ;
_________________________________________________
Substitute the value for "y" {i.e., the value provided for "y"; in "Equation 1}" ;
for into the this [rewritten version of] "Equation 2" ;
→ and "rewrite the equation" ;
→ as follows:
_________________________________________________
→ " 4 (-4x + 16) − x = -4 " ;
_________________________________________________
Note the "distributive property" of multiplication :
_________________________________________________
a(b + c) = ab + ac ; AND:
a(b − c) = ab <span>− ac .
_________________________________________________
As such:
We have:
</span>
→ " 4 (-4x + 16) − x = - 4 " ;
_________________________________________________
AND:
→ "4 (-4x + 16) " = (4* -4x) + (4 *16) = " -16x + 64 " ;
_________________________________________________
Now, we can write the entire equation:
→ " -16x + 64 − x = - 4 " ;
Note: " - 16x − x = -16x − 1x = -17x " ;
→ " -17x + 64 = - 4 " ; Solve for "x" ;
Subtract "64" from EACH SIDE of the equation:
→ " -17x + 64 − 64 = - 4 − 64 " ;
to get:
→ " -17x = -68 " ;
Divide EACH side of the equation by "-17" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -17x / -17 = -68/ -17 ;
to get:
→ x = 4 ;
______________________________________
Now, Plug this value for "x" ; into "{Equation 1"} ;
which is: " y = -4x + 16" ; to solve for "y".
______________________________________
→ y = -4(4) + 16 ;
= -16 + 16 ;
→ y = 0 .
_________________________________________________________
The solution to this system set is: "x = 4" , "y = 0" ; or write as: [4, 0] .
_________________________________________________________
Now, let us check our answers—as directed in this very question itself ;
_________________________________________________________
→ Given the TWO (2) originally given equations in the system of equation; as they were originally rewitten;
→ Let us check;
→ For EACH of these 2 (TWO) equations; do these two equations hold true {i.e. do EACH SIDE of these equations have equal values on each side} ; when we "plug in" our obtained values of "4" (for "x") ; and "0" for "y" ??? ;
→ Consider the first equation given in our problem, as originally written in the system of equations:
→ " y = - 4x + 16 " ;
→ Substitute: "4" for "x" and "0" for "y" ; When done, are both sides equal?
→ "0 = ? -4(4) + 16 " ?? ; → "0 = ? -16 + 16 ?? " ; → Yes! ;
{Actually, that is how we obtained our value for "y" initially.}.
→ Now, let us check the other equation given—as originally written in this very question:
→ " 4y − x + 4 = ?? 0 ??? " ;
→ Let us "plug in" our obtained values into the equation;
{that is: "4" for the "x-value" ; & "0" for the "y-value" ;
→ to see if the "other side of the equation" {i.e., the "right-hand side"} holds true {i.e., in the case of this very equation—is equal to "0".}.
→ " 4(0) − 4 + 4 = ? 0 ?? " ;
→ " 0 − 4 + 4 = ? 0 ?? " ;
→ " - 4 + 4 = ? 0 ?? " ; Yes!
_____________________________________________________
→ As such, from "checking [our] answer (obtained values)" , we can be reasonably certain that our answer [obtained values] :
_____________________________________________________
→ "x = 4" and "y = 0" ; or; write as: [0, 4] ; are correct.
_____________________________________________________
Hope this lenghty explanation is of help! Best wishes!
_____________________________________________________
The pair of numbers that would be in the columns, considering the proportional relationship, is given as follows:
20 would be in the column for 2, and 60 would be in the column for 6.
<h3>What is a proportional relationship?</h3>
A proportional relationship is a special linear function, with intercept having a value of zero, in which the output variable is obtained with the multiplication of the input variable and the constant of proportionality k, as shown as follows:
y = kx
The table is extended to represent more equivalent ratios for 2:6, hence the constant of the relationship is given as follows:
k = 6/2 = 3.
Hence the equation is:
y = 3x.
The values given by each column are given as follows:
When x = 20, the numeric value of the relationship is of:
y = 3 x 20 = 60.
Hence the first option is correct.
More can be learned about proportional relationships at brainly.com/question/10424180
#SPJ1