9514 1404 393
Answer:
- 2nd force: 99.91 lb
- resultant: 213.97 lb
Step-by-step explanation:
In the parallelogram shown, angle B is the supplement of angle DAB:
∠B = 180° -77°37' = 102°23'
Angle ACB is the difference of angles 77°37' and 27°8', so is 50°29'.
Now, we know the angles and one side of triangle ABC. We can use the law of sines to solve for the other two sides.
BC/sin(A) = AB/sin(C)
AD = BC = AB·sin(A)/sin(C) = (169 lb)sin(27°8')/sin(50°29') ≈ 99.91 lb
AC = AB·sin(B)/sin(C) = (169 lb)sin(102°23')/sin(50°29') ≈ 213.97 lb
The lines are intersected at point (0, -5). So (0, -5) is the solution.
Answer is the third one
(0,-5 )
Answer:
C
Step-by-step explanation:
Answer: B
Step-by-step explanation:
Answer:
32,000
Step-by-step explanation: