A colloid has the particles that have the ability to scatter light called the Tyndall effect named after the scientist named Tyndall. A suspension has large suspended particles that settle out at the bottom of the container. A solution has small particles that are evenly distributed throughout. Hence the answer is choice 2.
Answer:
The correct answer is "False".
Explanation:
It is false that as carbon dioxide enters systemic blood, it causes more oxygen to dissociate from hemoglobin. Once an atom of oxygen binds to hemoglobin, hemoglobin change its shape and makes easier than a second and a third atom of oxygen binds towards it. This change in conformation makes no possible that carbon dioxide can cause that oxygen dissociates from hemoglobin.
274 mL H3 O+ and fully neutralized
It will take one teaspoon of Mg(OH)2 to completely neutralize 2.00×10^2mL of H3O+.
<h3>What is the purpose of milk of magnesia?</h3>
- For a brief period of time, this medicine is used to relieve sporadic constipation.
- It is an osmotic laxative, which means that it works by drawing water into the intestines, which aids in causing bowel movement.
<h3>What dosage of milk of magnesia is recommended for constipation?</h3>
- Take Milk of Magnesia once day, preferably before bed, in divided doses, or as prescribed by a physician.
- suggested dosage: 30 mL to 60 mL for adults and kids 12 years of age and older. 15 mL to 30 mL for children aged 6 to 11 years.
learn more about milk of magnesia here
brainly.com/question/15178597
#SPJ4
the question you are looking for is
People often take milk of magnesia to reduce the discomfort associated with acid stomach or heartburn. The recommended dose is 1 teaspoon, which contains 4.00x 10^{2} mg of Mg(OH)_2. What volume of an HCl solution with a pH of 1.3 can be neutralized by one dose of milk of magnesia? If the stomach contains 2.00x10^{2}mL of pH 1.3 solution, is all the acid neutralized? If not, what fraction is neutralized?
<u>Answer:</u> The amount of heat required to warm given amount of water is 470.9 kJ
<u>Explanation:</u>
To calculate the mass of water, we use the equation:

Density of water = 1 g/mL
Volume of water = 1.50 L = 1500 mL (Conversion factor: 1 L = 1000 mL)
Putting values in above equation, we get:

To calculate the heat absorbed by the water, we use the equation:

where,
q = heat absorbed
m = mass of water = 1500 g
c = heat capacity of water = 4.186 J/g°C
= change in temperature = 
Putting values in above equation, we get:

Hence, the amount of heat required to warm given amount of water is 470.9 kJ