Answer: it’s number 2 add a catalyst
Hopefully this helped :)
Correct answer is option E. <span>It is a redox reaction in which Zn is oxidized at the anode, and V is reduced at the cathode.
Reason:
In above reaction, the oxidation state of VO3- is +5, while that of VO2 is +4. Thus there is reduction of V from +5 to +4
In case of Zn, oxidation state of Zn is increased from 0 to +2, Thus process is referred as oxidation. </span>
Answer:
6.25% of the original amount
Explanation:
half-life means that half is gone for every certain period of time. Because the half life is 1 month, only half of the 'radionulide' is left every month.
after 1 month= 50%
after 2 months= 25%
after 3 months= 12.5%
after 4 months= 6.25%
Answer:
The atomic weight of an element represents the ratio of the average mass of atoms of a chemical element.
Answer:
7.3 g (NH₄)₃PO₄
Explanation:
The balanced equation for the reaction is:
H₃PO₄ + 3 NH₃ ----> (NH₄)₃PO₄
To find the mass of ammonium phosphate ((NH₄)₃PO₄) produced, you need to (1) convert grams NH₃ to moles NH₃ (via the molar mass from the periodic table), then (2) convert moles NH₃ to moles (NH₄)₃PO₄ (via mole-to-mole ratio from balanced equation), and then (3) convert moles (NH₄)₃PO₄ to grams (NH₄)₃PO₄ (via molar mass from periodic table). Make sure to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 2 sig figs because the given value (2.5 grams) has 2 sig figs.
Molar Mass (NH₃): 14.01 g/mol + 3(1.008 g/mol)
Molar Mass (NH₃): 17.034 g/mol
Molar Mass ((NH₄)₃PO₄):
3(14.01 g/mol) + 12(1.008 g/mol) + 30.97 g/mol + 4(16.00 g/mol)
Molar Mass ((NH₄)₃PO₄): 149.096 g/mol
2.5 g NH₃ 1 mole NH₃ 1 mole (NH₄)₃PO₄ 149.096 g
--------------- x -------------------- x --------------------------- x --------------------------
17.034 g 3 moles NH₃ 1 mole (NH₄)₃PO₄
= 7.3 g (NH₄)₃PO₄