1. 3.0% ----> 3.0 kg fat= 100 kg body weigh
also remember that 1 kg= 2.20 lbs

2. 0.94 g/mL----> 0.94 grams= 1 mL
1 Liters= 1000 mL
1kg= 1000 grams
Answer: i don't know
Explanation:
u gave no information on what you're asking
Answer:
HCO₂
Explanation:
From the information given:
The mass of the elements are:
Carbon C = 26.7 g; Hydrogen H = 2.24 g Oxygen O = 71.1 g
To determine the empirical formula;
First thing is to find the numbers of moles of each atom.
For Carbon:

For Hydrogen:

For Oxygen:

Now; we use the smallest no of moles to divide the respective moles from above.
For carbon:

For Hydrogen:

For Oxygen:

Thus, the empirical formula is HCO₂
Answer:
See explanation
Explanation:
The oxides or hydrides are formed by exchange of valency between the two atoms involved. The group of the atom bonded to oxygen or hydrogen in the binary compound can be deduced by considering the subscript attached to the oxygen or hydrogen atom.
Now let us take the journey;
R2O3- refers to an oxide of a group 13 element, eg Al2O3
R2O - refers to an oxide of group a group 1 element e.gNa2O
RO2 - refers to an oxide of a group 14, 15 or 16 element such as CO2, NO2 or SO2
RH2 - refers to the hydride of a group 12 element Eg CaH2
R2O7 - refers to an oxide of a group 17 element E.g Cl2O7
RH3- refers to a hydride of a group 13 element E.g AlH3