Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51
Answer:
Explanation:
We shall apply gas law formula
P₁ V₁ / T₁ = P₂V₂ / T₂
.914 x 350 / ( 273 + 22.7 ) = 1 x 220 / T₂
1.0818 = 220 / T₂
T₂ = 203.36 K
= - 69.64 ⁰ C
I think your answer is A not sure tho
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
Looking at the formula for the molecule, the ratio of carbon to hydrogen atoms is 5:12, so if we divide the number of carbon atoms by 5 and then multiply by 12, we can find the number of hydrogen atoms. Let's look at the available options and see what makes sense.
3.01 Ă— 10^24 Ă— (12/5) hydrogen atoms
* This is exactly correct.
(3.01 Ă— 10^24 / 5) hydrogen atoms
* Nope. This will tell you how many pentane MOLECULES you have, but not the number of hydrogen atoms.
3.01 Ă— 10^24 Ă— (5/12) hydrogen atoms
* Close, but the ratio (5/12) will tell you the number of carbon atoms you have if you give it the number of hydrogen atoms. So this choice is wrong.
3.01 Ă— 10^24 Ă— 12 hydrogen atoms description
* This would tell you the number of hydrogen atoms you have if you know the number of pentane molecules you have. So this choice is also wrong.