Answer:
work done = force multiplied by distance covered,which is 500n multiplied by 20 m= 10000nm
power= work done/time
p= 10000/10
p=1000
Answer:
They contain of atoms
Explanation:
That's because atomic weights or masses of each atom of each element are proportional to each other, the same number of atoms of each element will give masses that are also proportional to each other. If you start with 20 oxygen atoms, you will need 40 hydrogen atoms to make the water and you will get 20 molecules of water.
Answer:4
Explanation:
As shown in the image attached, a face-centred cubic structure has 8 atoms at the corners and 6 face center atoms.
Each corner atom contributes to eight cell, so per unit cell 1/8 ×8 =1atom
Face center atoms contributes to two unit cells 1/2 × 6=3atoms
Total atoms =3+1=4atoms
Therefore the atoms in Al FCC per unit cell is 4
Answer:
Only the organisms best adapted to their environment tend to survive and transmit their genetic characters in increasing numbers to succeeding generations while those less adapted tend to be eliminated.
Explanation:
According to Darwin's Theory of Evolution.
Hope this helped.
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3