Answer:
The atmosphere is the largest reservoir of the nitrogen as it is composed of 78% of Nitrogen. Although 78%, this is not used by the organisms directly as the nitrogen molecule exists in nature in the form of divalent joined via triple bonds.
These triple bonds require a great amount of energy to be broken and used. Only a few prokaryotic organisms called nitrogen-fixing bacteria have the capability to break these triple bonds as they contain enzymes-nitrogenase complex which converts the atmospheric nitrogen to usable forms like ammonia, nitrates and nitrites. About 92% of the atmospheric nitrogen is fixed through this way rest through thunderstorms and Haber's process.
Thus, nitrogen-fixing bacteria is the answer.
The answer is the nervous system.
Hope this helps!
→ Darwin believed that the need to adapt, in similar words, the changes occruing in the environment caused evolution.
The main cause of evolution, according to Darwin, was natural selection. Natural selection is a process in which a group of organisms with certain characteristics survive and thrive, in comparison to other organisms with different characteristics. This idea basically means that having some characteristics makes you suited for an environment.
And how would that ↑ explain Evolution?
Well, evolution is the change in species that occurs during time. But for you to change, there must be a cause for that change, which is none other than the need to survive, reproduce, etc.
→ As mentioned before, not all characteristics are enough to surive, and hopefully the image pasted below will help you.
Hope it helped,
BioTeacher101
Answer/ Explanation:
a. The genotype of a homozygous white eyed long winged female would be Vg+Vg+XrXr. We denote the white allele as recessive (r) because the XY male only has one copy and yet has red eyes, so the red eye trait (R) must be dominant. A homozygous red eyed vestigial winged male would have be VgVgXRY. The possible gametes for the female are Vg+Xr only. For the male, the possible gametes are VgXR or VgY
The attached punnett square shows the results of the cross. The females will all be Vg+VgXRXr. The males will all be Vg+VgXRY (must inherit Y from father). That means they will all have normal length wings, the males will have white eyes and the females will have red eyes.
b. The F2 flies arise from intercrossing the F1, so the cross will be Vg+VgXRXr x Vg+VgXRY. The possible gametes for the mother are: Vg+XR, Vg+Xr, VgXR or VgXr. The possible gametes for the father are Vg+Xr
, Vg+Y
, VgXr
, VgY
. The attached punnet square shows this cross. The ratio of the phenotypes will be 6:6:2:2, or 3:3:1:1 (long-winged red eye: long-winged white eye: vestigial wing red eye: vestigial wing white eye), genotypes shown in the attachment.
c. F1 cross back to the mother would be Vg+VgXRY x Vg+Vg+XrXr. The genotypes are shown in the attached punnet square. The offspring will all be long-winged with white eyes. The F1 to the father would be Vg+VgXRXr x VgVgXRY. The ratio would be 3:3:1:1 long-winged red eye: long-winged white eye: vestigial wing red eye: vestigial wing white eye
A, I’m pretty sure, Meiosis helps with genetic diversity