1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
14

The correlation coefficient between the two quantitative variables is approximately 0.006. What does the value of this correlati

on coefficient indicate about how well the model fits the data? A.) The model is a good fit. B.) The correlation coefficient is not within the correct range. C.) The model is not a good fit. D.) No conclusion can be drawn regarding how well the model fits the data

Mathematics
1 answer:
Lapatulllka [165]3 years ago
8 0

The answer is C.) The model is not a good fit.

You might be interested in
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Marine biologists have been studying the effects of acidification of the oceans on weights of male baluga whales in the Arctic O
PSYCHO15rus [73]

Answer:

c. 61.25 kg

Step-by-step explanation:

The margin of error in estimating the true mean weight of male baluga whales in the Artic Ocean.

a. 15.31 kg

b. 51.40 kg

c. 61.25 kg

d. 80.49 kg

Margin of Error Formula= z × Standard deviation/√n

95% confidence interval = 1.96

Standard deviation = 125kg

n = 16 samples

Margin of error= 1.96 × 125/√16

= 1.96 × 125/4

= 245/4

= 61.25kg

The margin of error in estimating the true mean weight of male baluga whales in the Artic Ocean is 61.25kg

6 0
3 years ago
A number, a power of a variable, or a product of the two is a monomial, while a _________ is the sum of monomials
andrew-mc [135]
A polynomial is the sum of monomials
5 0
3 years ago
Read 2 more answers
Solve 5-3^x=-40 round to the nearest ten-thousandth
solong [7]

5-3^x = -40

 subtract 5 from each side to get

-3^x=-45

 divide both sides by -1 to make them positive

3^x = 45

need to do the natural logarithm on both sides to remove the variable from the exponent

 so ln(3^x) = ln(45)

 use logarithm rule to move x out

x ln (3) = ln(45)

 dive each term by ln(3) then simplify to get

ln(3)/ln(45)

 so x = ln(3)/ln(45) which calculates out to 3.46497352

round off to ten thousandths is 3.4650

 

4 0
3 years ago
Read 2 more answers
Given tantheta = 4/3 and pi < theta < 3pi/2; find cos2theta
Sidana [21]

Answer:

d. -7/25

Step-by-step explanation:

π<θ<3π/2  in third quadrant

tanθ = 4/3

sinθ = - 4/5

cosθ = - 3/5

cos 2θ = cos²θ - sin²θ = (- 3/5)² - (- 4/5)² = 9/25 - 16/25 = - 7/25

8 0
3 years ago
Read 2 more answers
Other questions:
  • Nolan's Term Grades
    14·1 answer
  • In solving the inequality -3x &lt; 9, you would divide both sides of the inequality by -3 and flip over the inequality symbol. t
    12·1 answer
  • Mr.Diaz wishes to save at least $1500 in 12 months. if he saves 300 during the first 4 months what is the least possible average
    14·1 answer
  • Compare the numbers. Use &gt;, =, or &lt;
    12·1 answer
  • Simplify the exponential expres<br> 5.52<br> 
    5·1 answer
  • 13 times what equals 221
    11·2 answers
  • F(x)=8x sqrt(x-x^2) Find the exact maximum
    9·1 answer
  • Cot20. sinº0 = cos20​
    14·1 answer
  • Law of Sine.
    9·1 answer
  • A rectangular shaped pond is 16 meters long and 14 meters wide. The dimensions of a rectangular shaped lake nearby is 350%
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!