B. 10, 5, 2.5, 1.25, 0.625, 0.3125
Answer:
7
Step-by-step explanation:
Consider the closed region

bounded simultaneously by the paraboloid and plane, jointly denoted

. By the divergence theorem,

And since we have

the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have




Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by

, we have

Parameterize

by


which would give a unit normal vector of

. However, the divergence theorem requires that the closed surface

be oriented with outward-pointing normal vectors, which means we should instead use

.
Now,



So, the flux over the paraboloid alone is
A cosine is just a sine shifted to the left by π/2. A cosine of 4x is shifted to the left by only π/8 because of the factor 4. Sketch them.
The region we're looking for is this sausage-shaped part between the cos and the sin.
The x intercepts are at π/8 for the cosine and π/4 for the sine. The midpoint between them is at (π/8 + π/4)/2 = 3/16π.
The region is point symmetric around the x axis, so the y coordinate of the centroid is 0.
So the centroid is at (3/16π, 0)
Answer:
Hello! Your answer would be, C) Divide by 2
Step-by-step explanation:
And plz don't be mean. :(
Hope I helped! Brainiest plz!♥ Have a nice afternoon. Hope you make a 100%! -Amelia