1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wittaler [7]
3 years ago
7

10.

Mathematics
1 answer:
ZanzabumX [31]3 years ago
3 0

Answer: idk tbh

Step-by-step explanation:

You might be interested in
Write seventy two thousand and thirty two ?
miv72 [106K]
In numbers, <span>seventy two thousand and thirty two is 72032</span>
8 0
3 years ago
The amount of soda dispensing machine pours into a can of soda is normally distributedwith a mean of 12 ounces and a standard de
kaheart [24]

Answer:

0.1056

Step-by-step explanation:

Mean(μ) = 12 ounce

Standard deviation (σ) = 0.2 ounce

P(x<11.75) = ???

Let x be the random variable for the amount of soda a machine will dispense.

Using normal distribution

Z = (x - μ) / σ

Z = (11.75 - 12) / 0.2

Z = (-0.25)/0.2

Z = -1.25

From the normal distribution table

1.28 is 0.3944

Φ(z) is the tabular value of z

Φ(z) = 0.3944

Recall that when Z is negative

P(x<a) = 0.5 - Φ(z)

P(x < 11.75) = 0.5 - 0.3944

= 0.1056

7 0
3 years ago
Anne has 3 pairs of blue socks. If she randomly selects a pair of socks.what is the probability that it is a blue?
V125BC [204]

Answer:

I hate that clfufjwwjdkfkrifjeidoqodjfrjkejakxkdk

Step-by-step explanation:

5 0
3 years ago
Leonard uses 3 peach slices and 1 banana for his fruit parfaits. If he used 42 peach slices to make parfaits for his friends, ho
Naddika [18.5K]

Answer:ez 26

Step-by-step explanation: how do you not know this

5 0
3 years ago
Read 2 more answers
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Other questions:
  • Evaluate tan (cos^ -1 (- 15/17 )
    7·2 answers
  • jennifer scored a 69%, 82%, 74%, 91% and a 79% on her math tests this quarter. What is jennifer's average test score for this qu
    15·2 answers
  • Help quick !!!!!!!!!!!!!!
    12·2 answers
  • Point slope equation for the coordinates (6,-8) and (-14,-8)
    12·1 answer
  • Help!! see attached file
    12·2 answers
  • Use simple interest to find the ending balance.<br><br> 26000 at 3% for 2 years
    10·1 answer
  • Help Please I will Give Brainliest if Correct!!
    5·2 answers
  • Helppppp plzzzz I will mark brainliestttt
    15·1 answer
  • Please answer the question in the picture
    6·1 answer
  • which statement couls be used to explain why the function h(x)=x³ has an inverse relation that is also a function ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!