Answer:
Broad-spectrum antibiotics can cause antibiotic resistance.
Explanation:
- Antibiotics are the substances that inhibit the growth of or kill the bacteria and hence, these are used as medications for the treatment of a lot of bacterial diseases.
- These antibiotics can either be of broad-spectrum or the narrow spectrum.
- The broad-spectrum antibiotics are the ones that are effective against a variety of bacteria, both gram-positive and negative whereas the narrow-spectrum antibiotics are the ones that target only a specific type of bacteria.
- Since the bacteria can mutate very fast and hence, develop antibiotic resistance, the doctors usually avoid prescribing broad-spectrum antibiotics and only use them when the causal bacteria is completely unknown.
- Hence, in the given case the provider prescribes separate medications for both types of bacteria.
Answer:
There was no receptor for epinephrine to associate with and invigorate the sign transduction course that prompts the actuation of the compound
By and large, Earl Sutherland helped in translating and discovering the breakdown of the glycogen into glucose-1-phosphate in nearness of glycogen phosphorylase and this sign course pathway is activated by the epinephrine. The epinephrine doesn't have the correct receptor to discover and start the sign transduction process and thus glucose-1-phoshate isn't shaped. It requires CAMP which is again a second delivery person for starting the entire of the transduction procedure.
The virus life cycle could be divided into six steps: attachment, penetration, uncoating, gene expression and replication, assembly, and release.
Answer:
yes
Explanation:
it is found in many forms in the natural world.
Answer:
There is a chance that the person receiving that insulin will get a bad immune response, and there is a possibility that the animal might have a disease or infectious organisms, that their insulin might contain, and putting it inside a human might transmit that disease.
Explanation: