Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Answer :Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
Step-by-step explanation:
Considering the quadrilateral with vertices
d(0,0)
i(5,5)
n(8,4)
g(7,1)
Plotting the points into the coordinate plane gives us an observation that this quadrilateral with vertices d(0,0), i(5,5) n(8,4) g(7,1) is a KITE, as shown in figure a.
From the figure a, it is clear that the quadrilateral has
Two pairs of sides
Each pair having two equal-length sides which are adjacent
The angles being equal where the two pairs meet
Diagonals as shown in dashed lines cross at right angles, and one of the diagonals does bisect the other - cuts equally in half
Please check the attached figure a.
The answer is D.
You multiply 1,250,000 by 1.50= 1,875,000
Then add 1,875,000 to 1,250,000= 3,125,000
Divide by 1,000,000 and you get 3.125
Isolate the w. Note the equal sign. What you do to one side, you do to the other.
Add 3π to both sides
- 3π (+3π) + w = 2π (+3π)
w = 2π + (3π)
w = 5π
w = 5π is your answer
hope this helps