Answer:
I cant see the questions?
Step-by-step explanation:
Step-by-step explanation:
the introduction of a fraction tells us that we are dealing with multiplications, and therefore a geometric sequence (where every new term is created by multiplying the previous term by a constant factor, the ratio r).
I think your teacher made a mistake, or you made one when typing the question in here.
there is no factor r that creates
15×r = 9
and
9×r = 5/27
it would mean that
15 × r² = 5/27
r² = 5/27 / 15 = 5/27 × 1/15 = 5/405 = 1/81
r = 1/9
but 15 × 1/9 = 5 × 1/3 = 5/3 is NOT 9
and 9 × 1/9 = 9/9 = 1 is NOT 5/27
so, this can't be right.
on the other hand
15 × r = 9
r = 9/15 = 3/5
and then
9 × 3/5 = 27/5
so, either the sequence should have been
15, 5/3, 5/27
or (and I suspect this to be true)
15, 9, 27/5
under that assumption we have
s1 = 15
r = 3/5
sn = sn-1 × r = s1 × r^(n-1) = 15 × (3/5)^(n-1)
s10 = 15 × (3/5)⁹ = 15 × 19683/1953125 =
= 3 × 19683/390625 = 59049/390625 =
= 0.15116544 ≈ 0.151
The quotient is the answer to a division problem.
Answer:
Ethan rollerbladed each day
kilometers.
Step-by-step explanation:
Given:
Ethan rollerbladed a total of 623 km over d days.
Now, to find the kilometers Ethan rollerblade each day.
Total number of distance rollerbladed = 623 km.
Total number of days = 
<u><em>As, Ethan rollerbladed each day the same distance.</em></u>
Now, to get the distance Ethan rollerbladed in each day we divide total number of distance rollerbladed by total number of days:


Therefore, Ethan rollerbladed each day
kilometers.
Answer:
a) 0.125
b) 7
c) 0.875 hr
d) 1 hr
e) 0.875
Step-by-step explanation:l
Given:
Arrival rate, λ = 7
Service rate, μ = 8
a) probability that no requests for assistance are in the system (system is idle).
Let's first find p.
a) ρ = λ/μ

Probability that the system is idle =
1 - p
= 1 - 0.875
=0.125
probability that no requests for assistance are in the system is 0.125
b) average number of requests that will be waiting for service will be given as:
λ/(μ - λ)
= 7
(c) Average time in minutes before service
= λ/[μ(μ - λ)]
= 0.875 hour
(d) average time at the reference desk in minutes.
Average time in the system js given as: 1/(μ - λ)

= 1 hour
(e) Probability that a new arrival has to wait for service will be:
λ/μ =
= 0.875