<h2>
Answer</h2>
2.626984127 m
<h2>
Explanation:</h2><h2>
</h2>
You have to know the equation that relates wavelength, frequency, and velocity (it's like speed but a bit different).
v = f x λ
where:
v = velocity
f = frequency
λ = Wavelength
Rearrange to make λ subject:
λ = v / f
We've been given 331 as the speed, 126 as the frequency. Sub it into the equation:
331 / 126 = 2.626984127 m
since the unit for the heat of fusion is kJ/mol, you're going to have to convert the grams into moles in order to cancel out the unit. After that, you can solve like normal.
Answer:
8.194 Mev per nucleon
Explanation:
Mass of Barium = 135.905 amu
number of proton = 56, number of neutron = 80
Md = (Mp + Mn) - Mb Mp is the mass of proton, Mn is the mass of neutron, Mb is the mass of barium and Md is the mass defect
Mn = 1.00867 amu Mp = 1.00728 amu
Md = ( 56 ( 1.00728) + 80 ( 1.00867) = 137.1013 - 135.905 =1.1963 amu
Md = 1.1963 × 1 ÷ ( 6.02214 × 10 ²⁶ amu ) = 1.9865 × 10 ⁻²⁷ kg
Energy = mc² = 1.9865 × 10 ⁻²⁷ kg × (2.99792 × 10 ⁸ m/s)²
E= 1.78537 × 10⁻¹⁰ J
to convert to Mev
1.78537 × 10⁻¹⁰ × 6241457006000 = 1114.33 Mev
binding energy per nucleon = 1114.33 / 136 =8.194 Mev per nucleon