ClBr, two nonmetals
Hope this helps you
Answer:
11552.45 years
Explanation:
Given that:
Half life = 5730 years
Where, k is rate constant
So,
The rate constant, k = 0.00012 years⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.00012 years⁻¹
Initial concentration
= 160.0 counts/min
Final concentration
= 40.0 counts/min
Time = ?
Applying in the above equation, we get that:-
![t=11552.45\ years](https://tex.z-dn.net/?f=t%3D11552.45%5C%20years)
Answer:
answer. the measure. is f=90 the equbaliint is 180
Explanation:
yan ang sagot ko
Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.
![CuCl(s) \rightarrow Cu^{+}(aq) + Cl^{-}(aq)](https://tex.z-dn.net/?f=CuCl%28s%29%20%5Crightarrow%20Cu%5E%7B%2B%7D%28aq%29%20%2B%20Cl%5E%7B-%7D%28aq%29)
Initial: 0 0
Change: +x +x
Equilibm: x x
![K_{sp} = 1.2 \times 10^{-6}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%201.2%20%5Ctimes%2010%5E%7B-6%7D)
And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
![1.2 \times 10^{-6} = x \times x](https://tex.z-dn.net/?f=1.2%20%5Ctimes%2010%5E%7B-6%7D%20%3D%20x%20%5Ctimes%20x)
x = ![1.1 \times 10^{-3} M](https://tex.z-dn.net/?f=1.1%20%5Ctimes%2010%5E%7B-3%7D%20M)
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, ![K_{sp} = 1.2 \times 10^{-6}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%201.2%20%5Ctimes%2010%5E%7B-6%7D)
, ![K = 8.7 \times 10^{4}](https://tex.z-dn.net/?f=K%20%3D%208.7%20%5Ctimes%2010%5E%7B4%7D)
Net equation: ![CuCl(s) + Cl^{-}(aq) \rightarrow CuCl_{2}(aq)](https://tex.z-dn.net/?f=CuCl%28s%29%20%2B%20Cl%5E%7B-%7D%28aq%29%20%5Crightarrow%20CuCl_%7B2%7D%28aq%29)
= 0.1044
So for, ![CuCl(s) + Cl^{-}(aq) \rightarrow CuCl_{2}(aq)](https://tex.z-dn.net/?f=CuCl%28s%29%20%2B%20Cl%5E%7B-%7D%28aq%29%20%5Crightarrow%20CuCl_%7B2%7D%28aq%29)
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = ![\frac{CuCl_{2}}{Cl^{-}}](https://tex.z-dn.net/?f=%5Cfrac%7BCuCl_%7B2%7D%7D%7BCl%5E%7B-%7D%7D)
0.1044 = ![\frac{x}{0.1 - x}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B0.1%20-%20x%7D)
x = ![9.5 \times 10^{-3} M](https://tex.z-dn.net/?f=9.5%20%5Ctimes%2010%5E%7B-3%7D%20M)
Therefore, the solubility of CuCl in 0.1 M NaCl is
.