Looks like the interest rate is 0.23%, and the function is the first one shown, the first block.
Answer:
Step-by-step explanation:
![\sf \dfrac{1}{3}a^3-\dfrac{3}{4}a^2-\dfrac{5}{2}-\left[\dfrac{5}{2}a^2+\dfrac{3}{2}a^3+\dfrac{a}{3}-\dfrac{6}{5}\right]=](https://tex.z-dn.net/?f=%5Csf%20%5Cdfrac%7B1%7D%7B3%7Da%5E3-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7D-%5Cleft%5B%5Cdfrac%7B5%7D%7B2%7Da%5E2%2B%5Cdfrac%7B3%7D%7B2%7Da%5E3%2B%5Cdfrac%7Ba%7D%7B3%7D-%5Cdfrac%7B6%7D%7B5%7D%5Cright%5D%3D)
![\sf = \dfrac{1}{3}a^3-\dfrac{3}{4}a^2-\dfrac{5}{2}-\dfrac{5}{2}a^2-\dfrac{3}{2}a^3-\dfrac{a}{3}+\dfrac{6}{5}\\\\\\( Combine \ like \ terms)\\\\= \dfrac{1}{3}a^3 -\dfrac{3}{2}a^3 -\dfrac{3}{4}a^2-\dfrac{5}{2}a^2-\dfrac{a}{3}-\dfrac{5}{2}+\dfrac{6}{5}\\\\=\left[\dfrac{1*2}{3*2}-\dfrac{3*3}{2*3}\right]a^3 + \left[-\dfrac{3}{4}-\dfrac{5*2}{2*2}\right]a^2-\dfrac{a}{3}+\left[-\dfrac{5*5}{2*5}+\dfrac{6*2}{5*2}\right]\\\\\\](https://tex.z-dn.net/?f=%5Csf%20%3D%20%20%5Cdfrac%7B1%7D%7B3%7Da%5E3-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7D-%5Cdfrac%7B5%7D%7B2%7Da%5E2-%5Cdfrac%7B3%7D%7B2%7Da%5E3-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cdfrac%7B6%7D%7B5%7D%5C%5C%5C%5C%5C%5C%28%20Combine%20%5C%20like%20%5C%20terms%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B3%7Da%5E3%20-%5Cdfrac%7B3%7D%7B2%7Da%5E3%20-%5Cdfrac%7B3%7D%7B4%7Da%5E2-%5Cdfrac%7B5%7D%7B2%7Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D-%5Cdfrac%7B5%7D%7B2%7D%2B%5Cdfrac%7B6%7D%7B5%7D%5C%5C%5C%5C%3D%5Cleft%5B%5Cdfrac%7B1%2A2%7D%7B3%2A2%7D-%5Cdfrac%7B3%2A3%7D%7B2%2A3%7D%5Cright%5Da%5E3%20%2B%20%5Cleft%5B-%5Cdfrac%7B3%7D%7B4%7D-%5Cdfrac%7B5%2A2%7D%7B2%2A2%7D%5Cright%5Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cleft%5B-%5Cdfrac%7B5%2A5%7D%7B2%2A5%7D%2B%5Cdfrac%7B6%2A2%7D%7B5%2A2%7D%5Cright%5D%5C%5C%5C%5C%5C%5C)
![\sf ==\left[\dfrac{2}{6}-\dfrac{9}{6}\right]a^3+\left[-\dfrac{3}{4}-\dfrac{10}{4}\right]a^2-\dfrac{a}{3}+\left[-\dfrac{25}{10}+\dfrac{12}{10}\right]\\\\=\dfrac{2-9}{6}a^3+\dfrac{(-3-10)}{4}a^2-\dfrac{a}{3}+\dfrac{(-25+12)}{15}\\\\](https://tex.z-dn.net/?f=%5Csf%20%3D%3D%5Cleft%5B%5Cdfrac%7B2%7D%7B6%7D-%5Cdfrac%7B9%7D%7B6%7D%5Cright%5Da%5E3%2B%5Cleft%5B-%5Cdfrac%7B3%7D%7B4%7D-%5Cdfrac%7B10%7D%7B4%7D%5Cright%5Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cleft%5B-%5Cdfrac%7B25%7D%7B10%7D%2B%5Cdfrac%7B12%7D%7B10%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cdfrac%7B2-9%7D%7B6%7Da%5E3%2B%5Cdfrac%7B%28-3-10%29%7D%7B4%7Da%5E2-%5Cdfrac%7Ba%7D%7B3%7D%2B%5Cdfrac%7B%28-25%2B12%29%7D%7B15%7D%5C%5C%5C%5C)
I'm fairly certain the answer is 1/3.
4.3 Solving 3x2-2x-1 = 0 by the Quadratic Formula .
According to the Quadratic Formula, x , the solution for Ax2+Bx+C = 0 , where A, B and C are numbers, often called coefficients, is given by :
- B ± √ B2-4AC
x = ————————
2A
In our case, A = 3
B = -2
C = -1
Accordingly, B2 - 4AC =
4 - (-12) =
16
Applying the quadratic formula :
2 ± √ 16
x = —————
6
Two real solutions:
x =(2+√16)/6
or:
x =(2-√16)/6
If you multiply 7 * 4 it will give you the number of carnations which is 28.