Answer:
1. Find the molar mass of all the elements in the compound in grams per mole.
2. Find the molecular mass of the entire compound.
3. Divide the component's molar mass by the entire molecular mass.
4. You will now have a number between 0 and 1. Multiply it by 100% to get percent composition.
Explanation:
Explanation:
what's li and na stand for ?
Answer:
The law of conservation of matter states that in a chemical reaction matter cannot be created or destroyed
Explanation:
Answer:
a little less than 109.5°
Explanation:
SCl2 has four regions of electron density around the central atom of the molecule. This implies that it has a tetrahedral electron domain geometry with an expected bond angle of 109.5° according to valence shell electron pair repulsion theory.
However, there are two lone pair of electrons on the central atom of the molecule which decreases the bond angle a little less than 109.5° owing to repulsion between electron pairs.
<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=