Answer:
The enthalpy for given reaction is 232 kilo Joules.
Explanation:
...[1]
..[2]
..[3]
..[4]
2 × [2] + [3] - [1] ( Using Hess's law)
The enthalpy for given reaction is 232 kilo Joules.
Answer: The energy transferred is known as kinetic energy, and it depends on the mass and speed achieved.
Answer:
There are many effects of radiation to the human body. (if you watch the 100, you'll see what happens)
Exposure to very high levels of radiation, such as being close to an atomic blast, can cause acute health effects such as
1. weakness
a/ fatigue,
b/ fainting,
c/ confusion.
2.Bleeding from the nose,
a/ mouth,
b/ gums,
c/ rectum
3. Bruising,
a/ skin burns,
b/ open sores on the skin,
c/ sloughing of skin.
4. Dehydration.
5. Diarrhea, bloody stool.
6. Fever.
7. Hair loss.
8. Inflammation of ex
Answer:
0.382 atm
Explanation:
In order to find the pressure, you need to know the moles of carbon dioxide (CO₂) gas. This can be found by multiplying the mass (g) by the molar mass (g/mol) of CO₂. It is important to arrange the conversion in a way that allows for the cancellation of units.
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
15 grams CO₂ 1 mole
---------------------- x ------------------------ = 0.341 moles CO₂
44.007 grams
To find the pressure, you need to use the Ideal Gas Law equation.
PV = nRT
In this equation,
-----> P = pressure (atm)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas Constant (0.08206 atm*L/mol*K)
-----> T = temperature (K)
After you convert Celsius to Kelvin, you can plug the given and calculated values into the equation and simplify to find the pressure.
P = ? atm R = 0.08206 atm*L/mol*K
V = 20 L T = 0 °C + 273.15 = 273.15 K
n = 0.341 moles
PV = nRT
P(20 L) = (0.341 moles)(0.08206 atm*L/mol*K)(273.15 K)
P(20 L) = 7.64016
P = 0.382 atm