Answer:
negative charge
Explanation:
Neutrons have no charge, protons have positive charge, and electrons have a negative charge
The molarity of a solution in which 55. 49 g of calcium chloride is dissolved in enough water to make 500. ml of solution is 1M.
<h3>What is molarity? </h3>
It is defined as number of moles of solute divided by volume of solution.
Given,
Mass of CaCl2 =55.49g
Molar mass of CaCl2 =40+35+35=110g
Mole= given mass/ molar mass
= 55.49/110=0.50mol.
Now, putting all values we get the molarity
Molarity =0.5×1000/500=1M
Thus, the molarity of given solution is 1M.
learn more about Molarity:
brainly.com/question/26921570
#SPJ4
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
A.
Elements in the same group have similar properties.
B.
The similarity in their properties arises from the fact that they have an equal number of valence shell electrons.
C.
Fluorine, Chlorine, Bromine
<u>Answer:</u> The molarity of Iron (III) chloride is 0.622 M.
<u>Explanation:</u>
Molarity is defined as the number of moles present in one liter of solution. The equation used to calculate molarity of the solution is:

Or,

We are given:
Mass of iron (III) chloride = 1.01 g
Molar mass of iron (III) chloride = 162.2 g/mol
Volume of the solution = 10 mL
Putting values in above equation, we get:

Hence, the molarity of Iron (III) chloride is 0.622 M.